🚀 Wav2Vec2-Large-XLSR-53-粤语
本模型基于Common Voice粤语数据,对facebook/wav2vec2-large-xlsr-53进行了微调。使用该模型时,请确保输入的语音采样率为16kHz。
模型信息
属性 |
详情 |
支持语言 |
粤语 |
数据集 |
Common Voice |
评估指标 |
字符错误率(CER) |
标签 |
音频、自动语音识别、语音、xlsr微调周 |
许可证 |
Apache-2.0 |
模型表现
模型名称 |
任务 |
数据集 |
评估指标 |
数值 |
wav2vec2-large-xlsr-cantonese |
语音识别 |
Common Voice zh-HK |
测试CER |
15.36 |
🚀 快速开始
✨ 主要特性
- 基于预训练模型
facebook/wav2vec2-large-xlsr-53
微调,在粤语语音识别任务上表现良好。
- 可直接使用,无需语言模型。
📦 安装指南
文档未提及安装步骤,可参考Hugging Face相关库的安装方法,如:
pip install transformers datasets torchaudio jiwer
💻 使用示例
基础用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "zh-HK", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("ctl/wav2vec2-large-xlsr-cantonese")
model = Wav2Vec2ForCTC.from_pretrained("ctl/wav2vec2-large-xlsr-cantonese")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
📚 详细文档
评估
该模型可在Common Voice的中文(香港)测试数据上进行评估,示例代码如下:
!pip install jiwer
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import argparse
lang_id = "zh-HK"
model_id = "ctl/wav2vec2-large-xlsr-cantonese"
chars_to_ignore_regex = '[\,\?\.\!\-\;\:"\“\%\‘\”\�\.\⋯\!\-\:\–\。\》\,\)\,\?\;\~\~\…\︰\,\(\」\‧\《\﹔\、\—\/\,\「\﹖\·\']'
test_dataset = load_dataset("common_voice", f"{lang_id}", split="test")
cer = load_metric("cer")
processor = Wav2Vec2Processor.from_pretrained(f"{model_id}")
model = Wav2Vec2ForCTC.from_pretrained(f"{model_id}")
model.to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=16)
print("CER: {:2f}".format(100 * cer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果:15.51 %
训练
训练使用了Common Voice的train
和validation
数据集。训练脚本将发布在此处。
📄 许可证
本项目采用Apache-2.0许可证。