🚀 用于英语语音识别的微调XLSR - 53大模型
本项目是在英语数据集上对 facebook/wav2vec2-large-xlsr-53 进行微调的成果。使用了 Common Voice 6.1 的训练集和验证集进行训练。使用此模型时,请确保语音输入的采样率为 16kHz。
该模型的微调得益于 OVHcloud 慷慨提供的 GPU 计算资源。训练脚本可在 此处 找到。
📦 模型信息
属性 |
详情 |
数据集 |
common_voice、mozilla - foundation/common_voice_6_0 |
评估指标 |
WER(词错误率)、CER(字符错误率) |
标签 |
audio、automatic - speech - recognition、en、hf - asr - leaderboard、mozilla - foundation/common_voice_6_0、robust - speech - event、speech、xlsr - fine - tuning - week |
许可证 |
apache - 2.0 |
模型评估结果
任务 |
数据集 |
评估指标 |
值 |
自动语音识别 |
Common Voice en |
测试 WER |
19.06 |
自动语音识别 |
Common Voice en |
测试 CER |
7.69 |
自动语音识别 |
Common Voice en |
测试 WER (+LM) |
14.81 |
自动语音识别 |
Common Voice en |
测试 CER (+LM) |
6.84 |
自动语音识别 |
Robust Speech Event - Dev Data |
开发集 WER |
27.72 |
自动语音识别 |
Robust Speech Event - Dev Data |
开发集 CER |
11.65 |
自动语音识别 |
Robust Speech Event - Dev Data |
开发集 WER (+LM) |
20.85 |
自动语音识别 |
Robust Speech Event - Dev Data |
开发集 CER (+LM) |
11.01 |
💻 使用示例
基础用法
使用 HuggingSound 库:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
高级用法
编写自己的推理脚本:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "en"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
预测结果示例
参考文本 |
预测文本 |
"SHE'LL BE ALL RIGHT." |
SHE'LL BE ALL RIGHT |
SIX |
SIX |
"ALL'S WELL THAT ENDS WELL." |
ALL AS WELL THAT ENDS WELL |
DO YOU MEAN IT? |
DO YOU MEAN IT |
THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. |
THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION |
HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? |
HOW IS MOSLILLAR GOING TO HANDLE ANDBEWOOTH HIS LIKE Q AND Q |
"I GUESS YOU MUST THINK I'M KINDA BATTY." |
RUSTIAN WASTIN PAN ONTE BATTLY |
NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? |
NO ONE NEAR THE REMOTE MACHINE YOU COULD RING |
SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. |
SAUCE FOR THE GUICE IS SAUCE FOR THE GONDER |
GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. |
GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD |
🔧 模型评估
评估 mozilla - foundation/common_voice_6_0
测试集
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset mozilla-foundation/common_voice_6_0 --config en --split test
评估 speech - recognition - community - v2/dev_data
开发集
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset speech-recognition-community-v2/dev_data --config en --split validation --chunk_length_s 5.0 --stride_length_s 1.0
📄 引用信息
如果您想引用此模型,可以使用以下 BibTeX 格式:
@misc{grosman2021xlsr53-large-english,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {E}nglish},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english}},
year={2021}
}