🚀 Whisper Large Northern Sámi
该模型是 openai/whisper-large-v2 在 audiofolder 数据集上的微调版本。它在评估集上取得了以下结果:
- 损失值:0.5559
- 字错率(Wer):24.9143
🚀 快速开始
本模型是基于 openai/whisper-large-v2
在 audiofolder
数据集上微调得到的。若要使用该模型进行自动语音识别任务,可参考以下步骤(此处仅为示例,具体使用需根据实际情况调整):
from transformers import AutoProcessor, AutoModelForSpeechSeq2Seq
processor = AutoProcessor.from_pretrained("your_model_path")
model = AutoModelForSpeechSeq2Seq.from_pretrained("your_model_path")
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
predicted_ids = model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)
print(transcription)
✨ 主要特性
- 基于强大的
openai/whisper-large-v2
模型进行微调,在 audiofolder
数据集上有良好表现。
- 可用于自动语音识别任务,在评估集上有明确的损失值和字错率指标。
📚 详细文档
模型信息
属性 |
详情 |
模型类型 |
基于 openai/whisper-large-v2 微调的自动语音识别模型 |
训练数据 |
audiofolder 数据集 |
评估指标 |
损失值(Loss)、字错率(Wer) |
训练过程
训练超参数
训练过程中使用了以下超参数:
- 学习率(learning_rate): 1e-05
- 训练批次大小(train_batch_size): 12
- 评估批次大小(eval_batch_size): 6
- 随机种子(seed): 42
- 分布式类型(distributed_type): 多 GPU
- 优化器(optimizer): Adam,其中 betas=(0.9, 0.999),epsilon=1e-08
- 学习率调度器类型(lr_scheduler_type): 线性
- 学习率调度器热身步数(lr_scheduler_warmup_steps): 500
- 训练步数(training_steps): 60000
- 混合精度训练(mixed_precision_training): 原生自动混合精度(Native AMP)
训练结果
训练损失 |
轮数 |
步数 |
验证损失 |
字错率(Wer) |
0.4665 |
58.0 |
1000 |
0.8572 |
54.5143 |
0.3041 |
117.0 |
2000 |
0.6711 |
44.1143 |
0.2671 |
176.0 |
3000 |
0.5794 |
39.7714 |
0.1761 |
235.0 |
4000 |
0.5357 |
35.0857 |
0.2089 |
294.0 |
5000 |
0.5094 |
33.6 |
0.1456 |
352.0 |
6000 |
0.4959 |
33.0286 |
0.1514 |
411.0 |
7000 |
0.4864 |
32.5714 |
0.1203 |
470.0 |
8000 |
0.4625 |
31.4286 |
0.0879 |
529.0 |
9000 |
0.4916 |
45.4857 |
0.0825 |
588.0 |
10000 |
0.4962 |
30.6286 |
0.0753 |
647.0 |
11000 |
0.4723 |
31.2 |
0.0812 |
705.0 |
12000 |
0.4574 |
28.6857 |
0.062 |
764.0 |
13000 |
0.4628 |
28.8000 |
0.0604 |
823.0 |
14000 |
0.4668 |
28.0000 |
0.0666 |
882.0 |
15000 |
0.4697 |
28.6857 |
0.0405 |
941.0 |
16000 |
0.4908 |
54.6286 |
0.0349 |
999.0 |
17000 |
0.4728 |
28.4571 |
0.0409 |
1058.0 |
18000 |
0.4884 |
28.4571 |
0.0292 |
1117.0 |
19000 |
0.4576 |
27.3143 |
0.0247 |
1176.0 |
20000 |
0.4734 |
28.9143 |
0.0229 |
1235.0 |
21000 |
0.4899 |
29.9429 |
0.0271 |
1294.0 |
22000 |
0.4790 |
28.1143 |
0.0271 |
1352.0 |
23000 |
0.5012 |
30.1714 |
0.0184 |
1411.0 |
24000 |
0.5008 |
27.3143 |
0.0211 |
1470.0 |
25000 |
0.5118 |
27.6571 |
0.0183 |
1529.0 |
26000 |
0.5398 |
30.0571 |
0.0164 |
1588.0 |
27000 |
0.5006 |
27.3143 |
0.0169 |
1647.0 |
28000 |
0.5059 |
27.0857 |
0.0147 |
1705.0 |
29000 |
0.5325 |
27.7714 |
0.0104 |
1764.0 |
30000 |
0.4818 |
26.1714 |
0.0128 |
1823.0 |
31000 |
0.5259 |
28.3429 |
0.0145 |
1882.0 |
32000 |
0.5299 |
26.2857 |
0.0075 |
1941.0 |
33000 |
0.5082 |
27.4286 |
0.0087 |
1999.0 |
34000 |
0.5144 |
26.6286 |
0.005 |
2058.0 |
35000 |
0.5590 |
27.0857 |
0.0099 |
2117.0 |
36000 |
0.5546 |
28.9143 |
0.007 |
2176.0 |
37000 |
0.5364 |
26.8571 |
0.0045 |
2235.0 |
38000 |
0.5574 |
27.2000 |
0.0064 |
2294.0 |
39000 |
0.5051 |
25.7143 |
0.0079 |
2352.0 |
40000 |
0.5247 |
25.9429 |
0.0083 |
2411.0 |
41000 |
0.5514 |
25.6 |
0.0101 |
2470.0 |
42000 |
0.5710 |
25.6 |
0.0062 |
2529.0 |
43000 |
0.5830 |
28.0000 |
0.0046 |
2588.0 |
44000 |
0.5828 |
26.8571 |
0.0053 |
2647.0 |
45000 |
0.5621 |
27.4286 |
0.0047 |
2705.0 |
46000 |
0.5673 |
25.9429 |
0.0045 |
2764.0 |
47000 |
0.5220 |
25.6 |
0.0065 |
2823.0 |
48000 |
0.5704 |
27.7714 |
0.0039 |
2882.0 |
49000 |
0.5741 |
27.7714 |
0.0027 |
2941.0 |
50000 |
0.5762 |
26.0571 |
0.0019 |
2999.0 |
51000 |
0.5559 |
24.9143 |
0.0015 |
3058.0 |
52000 |
0.5777 |
28.5714 |
0.0026 |
3117.0 |
53000 |
0.5589 |
25.2571 |
0.0032 |
3176.0 |
54000 |
0.6061 |
26.9714 |
0.0025 |
3235.0 |
55000 |
0.5776 |
25.1429 |
0.0046 |
3294.0 |
56000 |
0.5753 |
27.3143 |
0.0015 |
3352.0 |
57000 |
0.5736 |
27.2000 |
0.003 |
3411.0 |
58000 |
0.5933 |
25.6 |
0.002 |
3470.0 |
59000 |
0.6036 |
25.6 |
0.0007 |
58.0 |
60000 |
0.5975 |
25.2571 |
框架版本
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.11.0
📄 许可证
本模型采用 Apache-2.0 许可证。