🚀 wav2vec2-xlsr-1B-NPSC-NN
本模型是 facebook/wav2vec2-xls-r-1b 在 NBAILAB/NPSC - 16K_MP3 数据集上的微调版本。它在评估集上取得了以下结果:
- 损失值:0.4562
- 字错率(Wer):0.1531
📚 详细文档
模型信息
属性 |
详情 |
模型类型 |
wav2vec2-xlsr-1B-NPSC-NN |
训练数据集 |
NbAiLab/NPSC |
语言 |
nn-NO |
评估指标
该模型在 NPSC 数据集的 16K_mp3_nynorsk 数据上进行评估,结果如下:
- 测试(尼诺斯克语)字错率(WER):0.13347099680871036
- 测试(尼诺斯克语)字符错误率(CER):0.04537322093454329
训练过程
训练超参数
训练过程中使用了以下超参数:
- 学习率:6e-05
- 训练批次大小:8
- 评估批次大小:8
- 随机种子:42
- 梯度累积步数:2
- 总训练批次大小:16
- 优化器:Adam(β1 = 0.9,β2 = 0.999,ε = 1e-08)
- 学习率调度器类型:线性
- 学习率调度器热身步数:2000
- 训练轮数:50.0
- 混合精度训练:原生自动混合精度(Native AMP)
训练结果
训练损失 |
轮数 |
步数 |
验证损失 |
字错率(Wer) |
1.6894 |
1.08 |
500 |
1.2423 |
0.8619 |
0.7543 |
2.15 |
1000 |
0.5956 |
0.3817 |
0.5481 |
3.23 |
1500 |
0.5043 |
0.3246 |
0.4661 |
4.3 |
2000 |
0.4813 |
0.2793 |
0.3901 |
5.38 |
2500 |
0.4371 |
0.2592 |
0.3512 |
6.45 |
3000 |
0.4216 |
0.2458 |
0.3016 |
7.53 |
3500 |
0.3814 |
0.2257 |
0.278 |
8.6 |
4000 |
0.4151 |
0.2145 |
0.2435 |
9.68 |
4500 |
0.4816 |
0.2130 |
0.2122 |
10.75 |
5000 |
0.4489 |
0.2137 |
0.1949 |
11.83 |
5500 |
0.3978 |
0.2063 |
0.1929 |
12.9 |
6000 |
0.3823 |
0.2026 |
0.1757 |
13.98 |
6500 |
0.3409 |
0.1965 |
0.1771 |
15.05 |
7000 |
0.3844 |
0.1936 |
0.1452 |
16.13 |
7500 |
0.3749 |
0.1900 |
0.1341 |
17.2 |
8000 |
0.4407 |
0.2026 |
0.13 |
18.28 |
8500 |
0.4253 |
0.1883 |
0.1183 |
19.35 |
9000 |
0.4311 |
0.1880 |
0.118 |
20.43 |
9500 |
0.4431 |
0.1882 |
0.1123 |
21.51 |
10000 |
0.4753 |
0.1820 |
0.1037 |
22.58 |
10500 |
0.4087 |
0.1834 |
0.1066 |
23.66 |
11000 |
0.4151 |
0.1845 |
0.0977 |
24.73 |
11500 |
0.4367 |
0.1783 |
0.0968 |
25.81 |
12000 |
0.4237 |
0.1756 |
0.0835 |
26.88 |
12500 |
0.4729 |
0.1781 |
0.0919 |
27.96 |
13000 |
0.4153 |
0.1701 |
0.0677 |
29.03 |
13500 |
0.4317 |
0.1693 |
0.0726 |
30.11 |
14000 |
0.4380 |
0.1736 |
0.066 |
31.18 |
14500 |
0.4384 |
0.1681 |
0.0713 |
32.26 |
15000 |
0.4215 |
0.1629 |
0.0605 |
33.33 |
15500 |
0.4574 |
0.1714 |
0.0632 |
34.41 |
16000 |
0.4343 |
0.1642 |
0.0567 |
35.48 |
16500 |
0.4231 |
0.1601 |
0.0556 |
36.56 |
17000 |
0.4404 |
0.1667 |
0.0426 |
37.63 |
17500 |
0.4459 |
0.1625 |
0.0445 |
38.71 |
18000 |
0.4484 |
0.1629 |
0.0463 |
39.78 |
18500 |
0.4508 |
0.1596 |
0.0448 |
40.86 |
19000 |
0.4395 |
0.1605 |
0.0434 |
41.94 |
19500 |
0.4490 |
0.1607 |
0.0347 |
43.01 |
20000 |
0.4772 |
0.1582 |
0.0332 |
44.09 |
20500 |
0.4729 |
0.1582 |
0.037 |
45.16 |
21000 |
0.4559 |
0.1573 |
0.0328 |
46.24 |
21500 |
0.4664 |
0.1560 |
0.0366 |
47.31 |
22000 |
0.4543 |
0.1543 |
0.0377 |
48.39 |
22500 |
0.4507 |
0.1560 |
0.0331 |
49.46 |
23000 |
0.4567 |
0.1533 |
框架版本
- Transformers 4.17.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
📄 许可证
本模型采用 Apache-2.0 许可证。