🚀 Wav2Vec2-Large-XLSR-53-Romansh Vallader
本项目基于Common Voice数据集,在罗曼什-瓦拉德语(Romansh Vallader)上对facebook/wav2vec2-large-xlsr-53模型进行了微调。使用该模型时,请确保输入的语音采样率为16kHz。
✨ 主要特性
- 语言支持:针对罗曼什-瓦拉德语进行优化,适用于该语言的自动语音识别任务。
- 模型来源:基于预训练的
facebook/wav2vec2-large-xlsr-53
模型微调而来。
📦 安装指南
文档未提及具体安装步骤,故跳过此章节。
💻 使用示例
基础用法
模型可以直接使用(无需语言模型),示例代码如下:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "rm-vallader", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
高级用法
在罗曼什-瓦拉德语的Common Voice测试数据上对模型进行评估的代码如下:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "rm-vallader", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader")
model = Wav2Vec2ForCTC.from_pretrained("anuragshas/wav2vec2-large-xlsr-53-rm-vallader")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\”\„\–\…\«\»]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub('’ ',' ',batch["sentence"])
batch["sentence"] = re.sub(' ‘',' ',batch["sentence"])
batch["sentence"] = re.sub('’|‘','\'',batch["sentence"])
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果:32.89 %
📚 详细文档
模型信息
属性 |
详情 |
模型类型 |
Anurag Singh XLSR Wav2Vec2 Large 53 Romansh Vallader |
训练数据 |
Common Voice的train 和validation 数据集 |
评估指标 |
词错误率(WER) |
许可证 |
Apache-2.0 |
训练信息
训练使用了Common Voice的train
和validation
数据集。
📄 许可证
本项目采用Apache-2.0许可证。