🚀 SEW-D-tiny
SEW-D-tiny是基于16kHz采样语音音频预训练的基础模型。该模型可用于自动语音识别、说话人识别、意图分类、情感识别等下游任务。使用时,请确保输入的语音也采样为16kHz。
🔍 模型信息
属性 |
详情 |
模型类型 |
语音识别模型 |
训练数据 |
LibriSpeech ASR 数据集 |
标签 |
音频、语音、自动语音识别、HF自动语音识别排行榜 |
许可证 |
Apache-2.0 |
📚 相关链接
📖 论文信息
- 标题:Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition
- 作者:Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi
- 摘要:本文研究了自动语音识别(ASR)预训练模型中的性能 - 效率权衡问题。聚焦于wav2vec 2.0,本文提出了几种影响模型性能和效率的架构设计。综合所有观察结果,引入了SEW(Squeezed and Efficient Wav2vec),这是一种在各种训练设置下,在性能和效率方面都有显著改进的预训练模型架构。例如,在LibriSpeech的100h - 960h半监督设置下,与wav2vec 2.0相比,SEW的推理速度提高了1.9倍,单词错误率相对降低了13.5%。在相似的推理时间内,SEW在不同模型大小下将单词错误率降低了25 - 50%。
- 原始模型:https://github.com/asappresearch/sew#model-checkpoints
🚀 快速开始
💻 使用示例
基础用法
from transformers import Wav2Vec2Processor, SEWDForCTC
from datasets import load_dataset
import soundfile as sf
import torch
processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-tiny-100k-ft-ls100h")
model = SEWDForCTC.from_pretrained("asapp/sew-d-tiny-100k-ft-ls100h")
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
input_values = processor(ds[0]["audio"]["array"], return_tensors="pt").input_values
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
评估示例
from datasets import load_dataset
from transformers import SEWDForCTC, Wav2Vec2Processor
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = SEWDForCTC.from_pretrained("asapp/sew-d-tiny-100k-ft-ls100h").to("cuda")
processor = Wav2Vec2Processor.from_pretrained("asapp/sew-d-tiny-100k-ft-ls100h")
def map_to_pred(batch):
input_values = processor(batch["audio"][0]["array"], sampling_rate=16000,
return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"])
print("WER:", wer(result["text"], result["transcription"]))
📊 评估结果
"clean" |
"other" |
10.47 |
22.73 |
📄 许可证
本项目采用Apache-2.0许可证。