Wav2vec2 Large Xlsr Javanese
基于facebook/wav2vec2-large-xlsr-53微调的爪哇语自动语音识别模型,训练数据来自OpenSLR高质量爪哇语TTS数据。
下载量 659
发布时间 : 3/2/2022
模型简介
这是一个针对爪哇语优化的自动语音识别模型,能够将爪哇语语音转换为文本。
模型特点
高质量爪哇语识别
专门针对爪哇语优化的语音识别模型,在OpenSLR数据集上达到17.61%的WER。
基于XLSR预训练模型
基于facebook/wav2vec2-large-xlsr-53微调,利用了大规模跨语言语音表示学习。
无需语言模型
可以直接使用,不需要额外的语言模型支持。
模型能力
爪哇语语音识别
自动语音转文本
使用案例
语音转写
爪哇语语音转录
将爪哇语语音内容转换为文本形式
在测试集上达到17.61%的词错误率
语音助手
爪哇语语音交互
用于开发支持爪哇语的语音助手应用
🚀 Wav2Vec2-Large-XLSR-爪哇语
本模型是在 OpenSLR 高质量爪哇语 TTS 数据 上对 facebook/wav2vec2-large-xlsr-53 进行微调得到的。使用该模型时,请确保输入的语音采样率为 16kHz。
🚀 快速开始
本模型可直接使用(无需语言模型),具体操作如下。
💻 使用示例
基础用法
import torch
import torchaudio
from datasets import load_dataset, load_metric, Dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets.utils.download_manager import DownloadManager
from pathlib import Path
import pandas as pd
def load_dataset_javanese():
urls = [
"https://www.openslr.org/resources/41/jv_id_female.zip",
"https://www.openslr.org/resources/41/jv_id_male.zip"
]
dm = DownloadManager()
download_dirs = dm.download_and_extract(urls)
data_dirs = [
Path(download_dirs[0])/"jv_id_female/wavs",
Path(download_dirs[1])/"jv_id_male/wavs",
]
filenames = [
Path(download_dirs[0])/"jv_id_female/line_index.tsv",
Path(download_dirs[1])/"jv_id_male/line_index.tsv",
]
dfs = []
dfs.append(pd.read_csv(filenames[0], sep='\t', names=["path", "sentence"]))
dfs.append(pd.read_csv(filenames[1], sep='\t', names=["path", "client_id", "sentence"]))
dfs[1] = dfs[1].drop(["client_id"], axis=1)
for i, dir in enumerate(data_dirs):
dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1)
df = pd.concat(dfs)
# df = df.sample(frac=1, random_state=1).reset_index(drop=True)
dataset = Dataset.from_pandas(df)
dataset = dataset.remove_columns('__index_level_0__')
return dataset.train_test_split(test_size=0.1, seed=1)
dataset = load_dataset_javanese()
test_dataset = dataset['test']
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-javanese")
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-javanese")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])
评估模型
可以按照以下方式评估模型,也可以使用此 notebook 进行评估。
import torch
import torchaudio
from datasets import load_dataset, load_metric, Dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
from datasets.utils.download_manager import DownloadManager
from pathlib import Path
import pandas as pd
def load_dataset_javanese():
urls = [
"https://www.openslr.org/resources/41/jv_id_female.zip",
"https://www.openslr.org/resources/41/jv_id_male.zip"
]
dm = DownloadManager()
download_dirs = dm.download_and_extract(urls)
data_dirs = [
Path(download_dirs[0])/"jv_id_female/wavs",
Path(download_dirs[1])/"jv_id_male/wavs",
]
filenames = [
Path(download_dirs[0])/"jv_id_female/line_index.tsv",
Path(download_dirs[1])/"jv_id_male/line_index.tsv",
]
dfs = []
dfs.append(pd.read_csv(filenames[0], sep='\t', names=["path", "sentence"]))
dfs.append(pd.read_csv(filenames[1], sep='\t', names=["path", "client_id", "sentence"]))
dfs[1] = dfs[1].drop(["client_id"], axis=1)
for i, dir in enumerate(data_dirs):
dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1)
df = pd.concat(dfs)
# df = df.sample(frac=1, random_state=1).reset_index(drop=True)
dataset = Dataset.from_pandas(df)
dataset = dataset.remove_columns('__index_level_0__')
return dataset.train_test_split(test_size=0.1, seed=1)
dataset = load_dataset_javanese()
test_dataset = dataset['test']
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-javanese")
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-javanese")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”_\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果:17.61 %
🔧 训练
训练使用了 OpenSLR 高质量爪哇语 TTS 数据。训练脚本可在 此处 找到,评估脚本也可在 此处 找到。
📄 许可证
本项目采用 Apache-2.0 许可证。
📋 模型信息
属性 | 详情 |
---|---|
模型类型 | 基于 XLSR 的 Wav2Vec2 微调模型 |
训练数据 | OpenSLR 高质量爪哇语 TTS 数据 |
评估指标 | 字错率(WER) |
测试 WER | 17.61% |
Voice Activity Detection
MIT
基于pyannote.audio 2.1版本的语音活动检测模型,用于识别音频中的语音活动时间段
语音识别
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
这是一个针对葡萄牙语语音识别任务微调的XLSR-53大模型,基于Common Voice 6.1数据集训练,支持葡萄牙语语音转文本。
语音识别 其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先进自动语音识别(ASR)和语音翻译模型,在超过500万小时的标注数据上训练,具有强大的跨数据集和跨领域泛化能力。
语音识别 支持多种语言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI开发的最先进的自动语音识别(ASR)和语音翻译模型,经过超过500万小时标记数据的训练,在零样本设置下展现出强大的泛化能力。
语音识别
Transformers 支持多种语言

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的俄语语音识别模型,支持16kHz采样率的语音输入
语音识别 其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的中文语音识别模型,支持16kHz采样率的语音输入。
语音识别 中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的荷兰语语音识别模型,在Common Voice和CSS10数据集上训练,支持16kHz音频输入。
语音识别 其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的日语语音识别模型,支持16kHz采样率的语音输入
语音识别 日语
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基于Hugging Face预训练模型的文本与音频强制对齐工具,支持多种语言,内存效率高
语音识别
Transformers 支持多种语言

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的阿拉伯语语音识别模型,在Common Voice和阿拉伯语语音语料库上训练
语音识别 阿拉伯语
W
jonatasgrosman
2.3M
37
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98