FRED T5 Large Instruct V0.1
FRED-T5-large-instruct-v0.1 是一个基于 PyTorch 和 Transformers 的俄语文本自动编辑及问题解答模型,主要用于俄语文本的多种处理任务。
下载量 173
发布时间 : 4/1/2024
模型简介
该模型由 bond005 开发,用于俄语文本的自动编辑和问题解答,支持语音识别纠错、文本摘要、段落划分、文本简化、命名实体识别等多种功能。
模型特点
语音识别纠错
修正语音识别文本中的错误,恢复标点与大小写。
文本摘要
生成抽象式长文摘要,提炼核心观点。
文本简化
将复杂句子改写得通俗易懂。
命名实体识别
识别文本中的人物、地理位置和组织机构。
通用问答
回答各类问题并完成指令。
模型能力
语音识别纠错
文本摘要
段落划分
文本简化
命名实体识别
通用问答
使用案例
文本处理
语音识别纠错
修正语音识别文本中的错误,恢复标点与大小写。
纠错后的文本更准确,格式更规范。
文本摘要
生成抽象式长文摘要,提炼核心观点。
摘要结果简洁明了,保留原文核心信息。
信息提取
命名实体识别
识别文本中的人物、地理位置和组织机构。
准确列出文本中的命名实体。
问答系统
通用问答
回答各类问题并完成指令。
提供准确的问题解答和指令执行。
🚀 FRED-T5-large-instruct-v0.1
FRED-T5-large-instruct-v0.1 是由 bond005 训练的模型,可用于自动编辑文本并生成俄语问题的答案。该模型能够解决以下任务:
🚀 快速开始
此模型可解决多种文本处理任务,涵盖语音识别纠错、文本摘要、文本分段、文本简化、命名实体识别以及回答任意问题等。以下是各任务的使用说明和示例代码。
✨ 主要特性
- 多任务处理:能够处理语音识别纠错、文本摘要、文本分段、文本简化、命名实体识别以及回答任意问题等多种任务。
- 俄语支持:主要针对俄语文本进行训练,能够理解和处理标准俄语。
📦 安装指南
此部分原文档未提供具体安装命令,故跳过。
💻 使用示例
基础用法
以下是各任务的使用示例代码:
ASR 纠错
from typing import List
from transformers import T5ForConditionalGeneration
from transformers import GenerationConfig
from transformers import GPT2Tokenizer
import torch
def fix_recognition_error(texts: List[str], tokenizer: GPT2Tokenizer, config: GenerationConfig,
model: T5ForConditionalGeneration) -> List[str]:
nonempty_texts = []
for cur in texts:
if len(cur.strip()) > 3:
nonempty_texts.append(cur.strip())
if len(nonempty_texts) == 0:
return texts
x = tokenizer(nonempty_texts, return_tensors='pt', padding=True).to(model.device)
max_size = int(x.input_ids.shape[1] * 2.0 + 10)
out = model.generate(**x, generation_config=config, max_length=max_size)
results_for_nonempty_texts = [
' '.join(tokenizer.decode(cur, skip_special_tokens=True).strip().split()) for cur in out
]
united_results = []
idx = 0
for cur in texts:
if len(cur.strip()) > 3:
united_results.append(results_for_nonempty_texts[idx])
idx += 1
else:
united_results.append(cur.strip())
return united_results
ru_llm_tokenizer = GPT2Tokenizer.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
ru_llm_model = T5ForConditionalGeneration.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
ru_llm_config = GenerationConfig.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
if torch.cuda.is_available():
ru_llm_model = ru_llm_model.cuda()
asr_correction_example = \
'Исправь, пожалуйста, ошибки распознавания речи в следующем тексте. ' \
'краеугольным камнем любышь алгоритных машиного обучения является преждес его ' \
'обобщающая способности тогда мы обучаем некоторую модель у нас есть обучающая ' \
'выборка унаситькюмся ошибки и наша задачи сводится вообщем такомптиминационной ' \
'задачи мы минимизируем в функцию ошибки по параметрам нашей модели на обучающие ' \
'выбрать но на самом деле хотим там и не этого мы не обучающую ошибку хотим ' \
'минимизировать'
output = fix_recognition_error([asr_correction_example], ru_llm_tokenizer,
ru_llm_config, ru_llm_model)[0]
print(output)
Краеугольным камнем любого алгоритма машинного обучения является прежде всего обобщающая способность. Тогда мы обучаем некоторую модель, у нас есть обучающая выборка, у нас есть коэффициенты ошибки, и наша задача сводится, в общем-то, к мотивационной задаче: мы минимизируем функцию ошибки по параметрам нашей модели, на обучающей выборке, но на самом деле хотим там и не этого. Мы не обучающую ошибку хотим минимизировать.
文本摘要
from typing import List
from transformers import T5ForConditionalGeneration
from transformers import GenerationConfig
from transformers import GPT2Tokenizer
import torch
def generate_answer(answers: List[str], tokenizer: GPT2Tokenizer, config: GenerationConfig,
model: T5ForConditionalGeneration) -> List[str]:
nonempty_answers = []
for cur in answers:
if len(cur.strip()) > 0:
nonempty_answers.append(cur)
if len(nonempty_answers) == 0:
return ['' for _ in range(len(answers))]
x = tokenizer(nonempty_answers, return_tensors='pt', padding=True).to(model.device)
out = model.generate(**x, generation_config=config)
questions_for_nonempty_texts = [
tokenizer.decode(cur, skip_special_tokens=True).strip().replace('\r\n', '\n') for cur in out
]
united_questions = []
idx = 0
for cur in answers:
if len(cur.strip()) > 0:
united_questions.append(questions_for_nonempty_texts[idx])
idx += 1
else:
united_questions.append('')
return united_questions
ru_llm_tokenizer = GPT2Tokenizer.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
ru_llm_model = T5ForConditionalGeneration.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
ru_llm_config = GenerationConfig.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
if torch.cuda.is_available():
ru_llm_model = ru_llm_model.cuda()
summarization_example = \
'Выполни саммаризацию и выдели, пожалуйста, основную мысль следующего текста. ' \
'В данной работе проводится сравнение предварительного обучения трансформера на ' \
'текстах естественного языка и на предложениях синтетического псевдоязыка. ' \
'Искусственные тексты были автоматически сгенерированы по написанным нами правилам ' \
'в контекстно-свободной грамматике. Результаты дообучения на выполнение заданий ' \
'проекта RussianSuperGLUE статистически достоверно показали, что модели имеют ' \
'одинаковые оценки, т.е. можно считать, что использование искусственных данных ' \
'дает преимущество для “безопасности” искусственного интеллекта за счет ' \
'возможности полностью контролировать состав выборки. Также мы можем говорить ' \
'о том, что на этапе предобучения модели типа RoBERTa достаточно научиться ' \
'распознавать только синтаксические и морфологические закономерности языка, ' \
'которые могут быть успешно созданы довольно таким простым способом, как ' \
'контекстно-свободная грамматика.'
output = generate_answer([summarization_example], ru_llm_tokenizer,
ru_llm_config, ru_llm_model)[0]
print(output)
В работе сравнивается предварительное обучение трансформера на текстах естественного языка и на предложениях синтетического псевдоязыка. Результаты дообучения на выполнение заданий проекта RussianSuperGLUE статистически достоверно показали, что модели имеют одинаковые оценки. Использование искусственных данных дает преимущество для безопасности искусственного интеллекта за счет возможности полностью контролировать состав выборки.
文本分段
from typing import List
from transformers import T5ForConditionalGeneration
from transformers import GenerationConfig
from transformers import GPT2Tokenizer
import torch
def generate_answer(answers: List[str], tokenizer: GPT2Tokenizer, config: GenerationConfig,
model: T5ForConditionalGeneration) -> List[str]:
nonempty_answers = []
for cur in answers:
if len(cur.strip()) > 0:
nonempty_answers.append(cur)
if len(nonempty_answers) == 0:
return ['' for _ in range(len(answers))]
x = tokenizer(nonempty_answers, return_tensors='pt', padding=True).to(model.device)
out = model.generate(**x, generation_config=config)
questions_for_nonempty_texts = [
tokenizer.decode(cur, skip_special_tokens=True).strip().replace('\r\n', '\n') for cur in out
]
united_questions = []
idx = 0
for cur in answers:
if len(cur.strip()) > 0:
united_questions.append(questions_for_nonempty_texts[idx])
idx += 1
else:
united_questions.append('')
return united_questions
ru_llm_tokenizer = GPT2Tokenizer.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
ru_llm_model = T5ForConditionalGeneration.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
ru_llm_config = GenerationConfig.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
if torch.cuda.is_available():
ru_llm_model = ru_llm_model.cuda()
segmentation_example = \
'Разбей, пожалуйста, следующий текст на абзацы. Глубокие нейронные сети за ' \
'последнее время стали наиболее популярным инструментом для решения большинства ' \
'задач искусственного интеллекта и особенно задач анализа и генерации текстов на ' \
'естественном языке, относящихся к т.н. “разговорному искусственному интеллекту”. ' \
'Это произошло по двум причинам: 1. Нейронная сеть строит обучаемую иерархию ' \
'представлений. 2. Эта иерархия представлений является переиспользуемой между ' \
'задачами, на чем основана известная техника переноса обучения, когда нейросетевая ' \
'модель предварительно обучается (предобучается) на большой обучающей выборке ' \
'решать ненужную задачу, для которой доступна “дешевая” или автоматическая ' \
'разметка, а потом дообучается на малой обучающей выборке, описывающей конечную ' \
'задачу и размеченной вручную. При этом глубокие нейронные сети, как и другие ' \
'методы машинного обучения, могут быть неустойчивы к ряду уязвимостей и угроз, что ' \
'создает препятствия при создании доверительного искусственного интеллекта на ' \
'базе нейросетевого подхода.'
output = generate_answer([segmentation_example], ru_llm_tokenizer,
ru_llm_config, ru_llm_model)[0]
for it in output.split('\n'):
print(f'\n{it}\n')
Глубокие нейронные сети за последнее время стали наиболее популярным инструментом для решения большинства задач искусственного интеллекта и особенно задач анализа и генерации текстов на естественном языке, относящихся к т.н. “разговорному искусственному интеллекту”. Это произошло по двум причинам:
1. Нейронная сеть строит обучаемую иерархию представлений.
2. Эта иерархия представлений является переиспользуемой между задачами, на чем основана известная техника переноса обучения, когда нейросетевая модель предварительно обучается (предобучается) на большой обучающей выборке решать ненужную задачу, для которой доступна “дешевая” или автоматическая разметка, а потом дообучается на малой обучающей выборке, описывающей конечную задачу и размеченной вручную.
При этом глубокие нейронные сети, как и другие методы машинного обучения, могут быть неустойчивы к ряду уязвимостей и угроз, что создает препятствия при создании доверительного искусственного интеллекта на базе нейросетевого подхода.
文本简化
from typing import List
from transformers import T5ForConditionalGeneration
from transformers import GenerationConfig
from transformers import GPT2Tokenizer
import torch
def generate_answer(answers: List[str], tokenizer: GPT2Tokenizer, config: GenerationConfig,
model: T5ForConditionalGeneration) -> List[str]:
nonempty_answers = []
for cur in answers:
if len(cur.strip()) > 0:
nonempty_answers.append(cur)
if len(nonempty_answers) == 0:
return ['' for _ in range(len(answers))]
x = tokenizer(nonempty_answers, return_tensors='pt', padding=True).to(model.device)
out = model.generate(**x, generation_config=config)
questions_for_nonempty_texts = [
tokenizer.decode(cur, skip_special_tokens=True).strip().replace('\r\n', '\n') for cur in out
]
united_questions = []
idx = 0
for cur in answers:
if len(cur.strip()) > 0:
united_questions.append(questions_for_nonempty_texts[idx])
idx += 1
else:
united_questions.append('')
return united_questions
ru_llm_tokenizer = GPT2Tokenizer.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
ru_llm_model = T5ForConditionalGeneration.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
ru_llm_config = GenerationConfig.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
if torch.cuda.is_available():
ru_llm_model = ru_llm_model.cuda()
simplification_example = \
'Упрости, пожалуйста, следующий текст. ' \
'Краеугольным камнем любых алгоритмов машинного обучения является, прежде всего, ' \
'обобщающая способность. Когда мы обучаем некоторую модель, у нас есть обучающая ' \
'выборка, у нас есть функция ошибки, и наша задача сводится, в общем-то, ' \
'к оптимизационной задаче. Мы минимизируем функцию ошибки по параметрам нашей ' \
'модели на обучающей выборке. Но на самом деле хотим-то мы не этого! ' \
'Мы не обучающую ошибку хотим минимизировать.'
output = generate_answer([summarization_example], ru_llm_tokenizer,
ru_llm_config, ru_llm_model)[0]
print(output)
Алгоритмы машинного обучения должны учитывать обобщающую способность, а не только функцию ошибки. При обучении модели мы минимизируем функцию ошибки, но не обучающую ошибку.
命名实体识别 (NER)
from typing import List
from transformers import T5ForConditionalGeneration
from transformers import GenerationConfig
from transformers import GPT2Tokenizer
import torch
def generate_answer(answers: List[str], tokenizer: GPT2Tokenizer, config: GenerationConfig,
model: T5ForConditionalGeneration) -> List[str]:
nonempty_answers = []
for cur in answers:
if len(cur.strip()) > 0:
nonempty_answers.append(cur)
if len(nonempty_answers) == 0:
return ['' for _ in range(len(answers))]
x = tokenizer(nonempty_answers, return_tensors='pt', padding=True).to(model.device)
out = model.generate(**x, generation_config=config)
questions_for_nonempty_texts = [
tokenizer.decode(cur, skip_special_tokens=True).strip().replace('\r\n', '\n') for cur in out
]
united_questions = []
idx = 0
for cur in answers:
if len(cur.strip()) > 0:
united_questions.append(questions_for_nonempty_texts[idx])
idx += 1
else:
united_questions.append('')
return united_questions
ru_llm_tokenizer = GPT2Tokenizer.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
ru_llm_model = T5ForConditionalGeneration.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
ru_llm_config = GenerationConfig.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
if torch.cuda.is_available():
ru_llm_model = ru_llm_model.cuda()
ner_examples = [
'Найди, пожалуйста, все именованные сущности типа "Организация" в следующем ' \
'тексте и выпиши список таких сущностей. Окончил Костромской государственный ' \
'педагогический институт по специальности "учитель истории и обществоведения, ' \
'методист воспитательной работы".', # organization
'Найди, пожалуйста, все именованные сущности типа "Человек" в следующем тексте ' \
'и выпиши список таких сущностей. С. Ситников - уроженец Костромы, пользуется ' \
'популярностью в области.', # person
'Найди, пожалуйста, все именованные сущности типа "Местоположение" в следующем ' \
'тексте и выпиши список таких сущностей. С. Ситников - уроженец Костромы, ' \
'пользуется популярностью в области.', # location
]
outputs = generate_answer(ner_examples, ru_llm_tokenizer, ru_llm_config, ru_llm_model)
for it in outputs:
print(f'\n{it}')
Костромской государственный педагогический институт
С. Ситников
Костромы
回答任意问题
from typing import List
from transformers import T5ForConditionalGeneration
from transformers import GenerationConfig
from transformers import GPT2Tokenizer
import torch
def generate_answer(answers: List[str], tokenizer: GPT2Tokenizer, config: GenerationConfig,
model: T5ForConditionalGeneration) -> List[str]:
nonempty_answers = []
for cur in answers:
if len(cur.strip()) > 0:
nonempty_answers.append(cur)
if len(nonempty_answers) == 0:
return ['' for _ in range(len(answers))]
x = tokenizer(nonempty_answers, return_tensors='pt', padding=True).to(model.device)
out = model.generate(**x, generation_config=config)
questions_for_nonempty_texts = [
tokenizer.decode(cur, skip_special_tokens=True).strip().replace('\r\n', '\n') for cur in out
]
united_questions = []
idx = 0
for cur in answers:
if len(cur.strip()) > 0:
united_questions.append(questions_for_nonempty_texts[idx])
idx += 1
else:
united_questions.append('')
return united_questions
ru_llm_tokenizer = GPT2Tokenizer.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
ru_llm_model = T5ForConditionalGeneration.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
ru_llm_config = GenerationConfig.from_pretrained('bond005/FRED-T5-large-instruct-v0.1')
if torch.cuda.is_available():
ru_llm_model = ru_llm_model.cuda()
question_about_scientific_facts = 'Опишите процесс фотосинтеза.'
output = generate_answer([question_about_scientific_facts], ru_llm_tokenizer,
ru_llm_config, ru_llm_model)[0]
print(f'Вопрос: {question_about_scientific_facts[4:]}')
print(f'Ответ: {output}\n')
question_about_russian_grammar = 'Дополни предложение правильной формой глагола: ' \
'"Я ... (писать) письмо уже час."'
output = generate_answer([question_about_russian_grammar], ru_llm_tokenizer,
ru_llm_config, ru_llm_model)[0]
print(f'Вопрос: {question_about_russian_grammar[4:]}')
print(f'Ответ: {output}\n')
Опишите процесс фотосинтеза.
Фотосинтез - это процесс, в котором растения используют энергию света для преобразования углекислого газа и воды в глюкозу и кислород. Во время фотосинтеза светосинтетические органеллы растительной клетки - хлоропласты - преобразуют световую энергию в химическую, которая затем используется для синтеза глюкозы и других органических соединений.
Дополни предложение правильной формой глагола: "Я ... (писать) письмо уже час."
Я пишу письмо уже час.
📚 详细文档
此部分原文档未提供详细说明,故跳过。
🔧 技术细节
此部分原文档未提供具体技术实现细节,故跳过。
📄 许可证
该模型采用 Apache-2.0 许可证。
🚫 FRED-T5-large-instruct-v0.1 的局限性
⚠️ 重要提示
- 代码和事实不准确:模型可能会生成不正确的代码片段和陈述。用户应将这些输出视为建议或起点,而非确定或准确的解决方案。
- 语言限制:该模型主要设计用于理解标准俄语。非正式俄语、俚语或其他语言可能会给其理解带来挑战,导致潜在的误解或响应错误。
- 潜在的社会偏见:尽管在确保训练数据安全方面做出了努力,但 FRED-T5-large-instruct-v0.1 并非完全没有社会偏见。它有可能生成反映这些社会偏见的内容,特别是在被明确提示或要求这样做时。建议用户意识到这一点,并在解释模型输出时保持谨慎和批判性思维。
- 有害内容:如果明确提示或要求,模型仍可能产生有害内容。
Phi 2 GGUF
其他
Phi-2是微软开发的一个小型但强大的语言模型,具有27亿参数,专注于高效推理和高质量文本生成。
大型语言模型 支持多种语言
P
TheBloke
41.5M
205
Roberta Large
MIT
基于掩码语言建模目标预训练的大型英语语言模型,采用改进的BERT训练方法
大型语言模型 英语
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基础模型的蒸馏版本,在保持相近性能的同时更轻量高效,适用于序列分类、标记分类等自然语言处理任务。
大型语言模型 英语
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一个多语言大语言模型,针对多语言对话用例进行了优化,在常见的行业基准测试中表现优异。
大型语言模型 英语
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基于100种语言的2.5TB过滤CommonCrawl数据预训练的多语言模型,采用掩码语言建模目标进行训练。
大型语言模型 支持多种语言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基于Transformer架构的英语预训练模型,通过掩码语言建模目标在海量文本上训练,支持文本特征提取和下游任务微调
大型语言模型 英语
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI发布的开放预训练Transformer语言模型套件,参数量从1.25亿到1750亿,旨在对标GPT-3系列性能,同时促进大规模语言模型的开放研究。
大型语言模型 英语
O
facebook
6.3M
198
1
基于transformers库的预训练模型,适用于多种NLP任务
大型语言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多语言大语言模型系列,包含8B、70B和405B参数规模,支持8种语言和代码生成,优化了多语言对话场景。
大型语言模型
Transformers 支持多种语言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基础版是由Google开发的文本到文本转换Transformer模型,参数规模2.2亿,支持多语言NLP任务。
大型语言模型 支持多种语言
T
google-t5
5.4M
702
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98