🚀 PatentSBERTa
PatentSBERTa 是一个基于深度自然语言处理(NLP)的混合模型,用于专利距离计算和分类。它借助增强的 SBERT 技术,能够将句子和段落映射到 768 维的密集向量空间,可应用于聚类、语义搜索等任务。
🚀 快速开始
本模型可以通过 sentence-transformers
库或 HuggingFace Transformers
库使用,下面分别介绍这两种使用方式。
📦 安装指南
若要使用 sentence-transformers
库调用本模型,需先安装该库:
pip install -U sentence-transformers
💻 使用示例
基础用法(Sentence-Transformers)
安装好 sentence-transformers
后,你可以按如下方式使用模型:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('AI-Growth-Lab/PatentSBERTa')
embeddings = model.encode(sentences)
print(embeddings)
高级用法(HuggingFace Transformers)
若未安装 sentence-transformers
,可以使用 HuggingFace Transformers
库调用模型。首先将输入数据传入 Transformer 模型,然后对上下文词嵌入应用合适的池化操作:
from transformers import AutoTokenizer, AutoModel
import torch
def cls_pooling(model_output, attention_mask):
return model_output[0][:,0]
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('AI-Growth-Lab/PatentSBERTa')
model = AutoModel.from_pretrained('AI-Growth-Lab/PatentSBERTa')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果
若要对本模型进行自动化评估,请参考 Sentence Embeddings Benchmark:https://seb.sbert.net
训练
本模型的训练参数如下:
数据加载器
torch.utils.data.dataloader.DataLoader
,长度为 5,参数如下:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
损失函数
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
fit()
方法的参数如下:
{
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 100,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用与作者
若要引用本模型,请使用以下 BibTeX 格式:
@article{bekamiri2021patentsberta,
title={PatentSBERTa: A Deep NLP based Hybrid Model for Patent Distance and Classification using Augmented SBERT},
author={Bekamiri, Hamid and Hain, Daniel S and Jurowetzki, Roman},
journal={arXiv preprint arXiv:2103.11933},
year={2021}
}
相关链接
- 论文链接:https://arxiv.org/abs/2103.11933
- 项目 GitHub 链接:https://github.com/AI-Growth-Lab/PatentSBERTa