🚀 韩语语义相似度模型 - ko-sroberta-nli
本模型基于 sentence-transformers 构建,它能够将句子和段落映射到 768 维的密集向量空间,可用于聚类、语义搜索等任务。
🚀 快速开始
📦 安装依赖
若已安装 sentence-transformers,使用本模型将十分便捷:
pip install -U sentence-transformers
💻 使用示例
基础用法(使用 sentence-transformers 库)
from sentence_transformers import SentenceTransformer
sentences = ["안녕하세요?", "한국어 문장 임베딩을 위한 버트 모델입니다."]
model = SentenceTransformer('jhgan/ko-sroberta-nli')
embeddings = model.encode(sentences)
print(embeddings)
高级用法(使用 HuggingFace Transformers 库)
若未安装 sentence-transformers,可以按以下步骤使用模型:首先,将输入数据传入 Transformer 模型,然后对上下文词嵌入应用合适的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('jhgan/ko-sroberta-nli')
model = AutoModel.from_pretrained('jhgan/ko-sroberta-nli')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📊 评估结果
本模型在 KorNLI 训练数据集上进行训练,并在 KorSTS 评估数据集上进行评估,结果如下:
评估指标 |
数值 |
余弦相似度 - Pearson 系数 |
82.83 |
余弦相似度 - Spearman 系数 |
83.85 |
欧氏距离 - Pearson 系数 |
82.87 |
欧氏距离 - Spearman 系数 |
83.29 |
曼哈顿距离 - Pearson 系数 |
82.88 |
曼哈顿距离 - Spearman 系数 |
83.28 |
点积相似度 - Pearson 系数 |
80.34 |
点积相似度 - Spearman 系数 |
79.69 |
🔧 训练细节
本模型的训练参数如下:
数据加载器
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
,长度为 8885,参数如下:
{'batch_size': 64}
损失函数
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,参数如下:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit() 方法的参数
{
"epochs": 1,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 889,
"weight_decay": 0.01
}
📚 完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📄 引用与作者
- Ham, J., Choe, Y. J., Park, K., Choi, I., & Soh, H. (2020). Kornli and korsts: New benchmark datasets for korean natural language understanding. arXiv preprint arXiv:2004.03289
- Reimers, Nils and Iryna Gurevych. “Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.” ArXiv abs/1908.10084 (2019)
- Reimers, Nils and Iryna Gurevych. “Making Monolingual Sentence Embeddings Multilingual Using Knowledge Distillation.” EMNLP (2020).