Serafim 100m Portuguese Pt Sentence Encoder Ir
模型简介
该模型专门针对葡萄牙语(PT)设计,能够将句子和段落转换为高维向量表示,便于进行语义相似度计算和信息检索。
模型特点
葡萄牙语优化
专门针对葡萄牙语文本进行优化,能够更好地捕捉葡萄牙语的语义特征。
高维向量表示
将文本映射到768维的密集向量空间,便于进行语义相似度计算。
句子级编码
能够处理句子和段落级别的文本,生成有意义的向量表示。
模型能力
文本向量化
语义相似度计算
信息检索
文本聚类
使用案例
信息检索
文档搜索
构建基于语义的文档搜索系统
提高搜索结果的语义相关性
文本分析
文本聚类
将语义相似的文档或句子自动分组
发现文本数据中的潜在主题
🚀 Serafim 100m葡萄牙语(PT)句子编码器
Serafim 100m葡萄牙语(PT)句子编码器是一个基于sentence-transformers
的模型,它可以将句子和段落映射到768维的密集向量空间,可用于聚类或语义搜索等任务。
🚀 快速开始
安装sentence-transformers
库
使用此模型,你需要先安装sentence-transformers
库:
pip install -U sentence-transformers
使用示例
基础用法
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('PORTULAN/serafim-100m-portuguese-pt-sentence-encoder-ir')
embeddings = model.encode(sentences)
print(embeddings)
高级用法
若不使用sentence-transformers
库,你可以按以下方式使用该模型:首先,将输入数据通过Transformer模型,然后对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('PORTULAN/serafim-100m-portuguese-pt-sentence-encoder-ir')
model = AutoModel.from_pretrained('PORTULAN/serafim-100m-portuguese-pt-sentence-encoder-ir')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果
要对该模型进行自动评估,请参考 Sentence Embeddings Benchmark:https://seb.sbert.net
训练参数
该模型使用以下参数进行训练:
数据加载器
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
,长度为361643,参数如下:
{'batch_size': 220}
损失函数
sentence_transformers.losses.GISTEmbedLoss.GISTEmbedLoss
,参数如下:
{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
), 'temperature': 0.01}
fit()
方法的参数
{
"epochs": 1,
"evaluation_steps": 1809,
"evaluator": "sentence_transformers.evaluation.InformationRetrievalEvaluator.InformationRetrievalEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 1e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": 361643,
"warmup_steps": 36165,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
引用与作者
该文章已在EPIA 2024会议上发表,并由Springer出版:
@InProceedings{epia2024serafim,
title={Open Sentence Embeddings for Portuguese with the Serafim PT* encoders family},
author={Luís Gomes and António Branco and João Silva and João Rodrigues and Rodrigo Santos},
editor={Manuel Filipe Santos and José Machado and Paulo Novais and Paulo Cortez and Pedro Miguel Moreira},
booktitle={Progress in Artificial Intelligence},
doi={doi.org/10.1007/978-3-031-73503-5_22},
year={2024},
publisher={Springer Nature Switzerland},
address={Cham},
pages={267--279},
isbn={978-3-031-73503-5}
}
在Springer出版之前,预印本可在arXiv上获取:
@misc{gomes2024opensentenceembeddingsportuguese,
title={Open Sentence Embeddings for Portuguese with the Serafim PT* encoders family},
author={Luís Gomes and António Branco and João Silva and João Rodrigues and Rodrigo Santos},
year={2024},
eprint={2407.19527},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2407.19527},
}
📄 许可证
本项目采用MIT许可证。
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98