E5 Base Korean
模型简介
该模型将句子和段落映射到768维的密集向量空间,可用于语义文本相似度、语义搜索、复述挖掘、文本分类、聚类等任务。
模型特点
多语言支持
支持100多种语言的文本嵌入,特别针对韩语进行了优化
高质量语义表示
在韩语语义相似度任务上表现出色,皮尔逊余弦相似度达到0.859
长文本处理
最大序列长度支持512个标记,适合处理段落级文本
模型能力
语义文本相似度计算
语义搜索
文本分类
文本聚类
复述挖掘
使用案例
信息检索
跨语言文档检索
在多语言文档库中查找语义相似的文档
内容推荐
相似新闻推荐
根据用户阅读内容推荐语义相似的新闻文章
🚀 upskyy/e5-base-korean
该模型是基于 intfloat/multilingual-e5-base 进行 korsts 和 kornli 微调的模型。它能将句子和段落映射到 768 维的密集向量空间,可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等任务。
🚀 快速开始
安装 Sentence Transformers 库
pip install -U sentence-transformers
加载模型并进行推理
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载
model = SentenceTransformer("upskyy/e5-base-korean")
# 进行推理
sentences = [
'아이를 가진 엄마가 해변을 걷는다.',
'두 사람이 해변을 걷는다.',
'한 남자가 해변에서 개를 산책시킨다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
不使用 sentence-transformers 时的使用方法
from transformers import AutoTokenizer, AutoModel
import torch
# 平均池化 - 考虑注意力掩码以进行正确的平均计算
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # 模型输出的第一个元素包含所有标记嵌入
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# 我们想要获取句子嵌入的句子
sentences = ["안녕하세요?", "한국어 문장 임베딩을 위한 버트 모델입니다."]
# 从 HuggingFace Hub 加载模型
tokenizer = AutoTokenizer.from_pretrained("upskyy/e5-base-korean")
model = AutoModel.from_pretrained("upskyy/e5-base-korean")
# 对句子进行分词
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
# 计算标记嵌入
with torch.no_grad():
model_output = model(**encoded_input)
# 进行池化操作。在这种情况下,是平均池化。
sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
print("Sentence embeddings:")
print(sentence_embeddings)
✨ 主要特性
- 多语言支持:支持多种语言,包括韩语等。
- 语义相似度计算:可有效计算句子之间的语义相似度。
- 高维向量映射:将句子和段落映射到 768 维的密集向量空间。
📦 安装指南
安装 Sentence Transformers 库:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载
model = SentenceTransformer("upskyy/e5-base-korean")
# 进行推理
sentences = [
'아이를 가진 엄마가 해변을 걷는다.',
'두 사람이 해변을 걷는다.',
'한 남자가 해변에서 개를 산책시킨다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
高级用法
from transformers import AutoTokenizer, AutoModel
import torch
# 平均池化 - 考虑注意力掩码以进行正确的平均计算
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # 模型输出的第一个元素包含所有标记嵌入
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# 我们想要获取句子嵌入的句子
sentences = ["안녕하세요?", "한국어 문장 임베딩을 위한 버트 모델입니다."]
# 从 HuggingFace Hub 加载模型
tokenizer = AutoTokenizer.from_pretrained("upskyy/e5-base-korean")
model = AutoModel.from_pretrained("upskyy/e5-base-korean")
# 对句子进行分词
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
# 计算标记嵌入
with torch.no_grad():
model_output = model(**encoded_input)
# 进行池化操作。在这种情况下,是平均池化。
sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | Sentence Transformer |
基础模型 | intfloat/multilingual-e5-base |
最大序列长度 | 512 个标记 |
输出维度 | 768 个标记 |
相似度函数 | 余弦相似度 |
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
评估指标
语义相似度
- 数据集:
sts-dev
- 使用
EmbeddingSimilarityEvaluator
进行评估
指标 | 值 |
---|---|
pearson_cosine | 0.8594 |
spearman_cosine | 0.8573 |
pearson_manhattan | 0.8217 |
spearman_manhattan | 0.828 |
pearson_euclidean | 0.8209 |
spearman_euclidean | 0.8277 |
pearson_dot | 0.8188 |
spearman_dot | 0.8236 |
pearson_max | 0.8594 |
spearman_max | 0.8573 |
框架版本
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.16.1
- Tokenizers: 0.19.1
📄 许可证
本模型采用 MIT 许可证。
📚 引用
BibTeX
@article{wang2024multilingual,
title={Multilingual E5 Text Embeddings: A Technical Report},
author={Wang, Liang and Yang, Nan and Huang, Xiaolong and Yang, Linjun and Majumder, Rangan and Wei, Furu},
journal={arXiv preprint arXiv:2402.05672},
year={2024}
}
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98