Mpnet Base All Nli Triplet Turkish V3
这是一个基于microsoft/mpnet-base微调的sentence-transformers模型,用于句子和段落的向量表示,支持语义文本相似度等任务。
下载量 27
发布时间 : 11/22/2024
模型简介
该模型将句子和段落映射到768维稠密向量空间,可用于语义文本相似度、语义搜索、复述挖掘、文本分类、聚类等任务。
模型特点
高效的句子嵌入
将句子转换为768维稠密向量,保留语义信息
语义相似度计算
能够准确计算句子间的语义相似度
基于三元组训练
使用锚点-正例-负例三元组进行训练,提升模型区分能力
模型能力
语义文本相似度计算
语义搜索
复述挖掘
文本分类
文本聚类
使用案例
信息检索
相似文档检索
根据输入句子查找语义相似的文档
文本分析
文本聚类
将语义相似的文本自动分组
🚀 MPNet base在AllNLI土耳其语三元组上训练的模型
该模型是基于 sentence-transformers 库,在 all-nli-triplets-turkish 数据集上对 microsoft/mpnet-base 模型进行微调得到的。它可以将句子和段落映射到768维的密集向量空间,可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等任务。
🚀 快速开始
首先安装 Sentence Transformers
库:
pip install -U sentence-transformers
然后,你可以加载此模型并进行推理:
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载
model = SentenceTransformer("mertcobanov/mpnet-base-all-nli-triplet-turkish-v3")
# 运行推理
sentences = [
'Ağaçlarla çevrili bulvar denize üç bloktan daha az uzanıyor.',
'Deniz üç sokak bile uzakta değil.',
'Denize ulaşmak için caddeden iki mil yol almanız gerekiyor.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 语义表示能力强:能够将句子和段落映射到768维的密集向量空间,有效捕捉语义信息。
- 多任务适用性:可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等多种自然语言处理任务。
📦 安装指南
安装 Sentence Transformers
库:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载
model = SentenceTransformer("mertcobanov/mpnet-base-all-nli-triplet-turkish-v3")
# 运行推理
sentences = [
'Ağaçlarla çevrili bulvar denize üç bloktan daha az uzanıyor.',
'Deniz üç sokak bile uzakta değil.',
'Denize ulaşmak için caddeden iki mil yol almanız gerekiyor.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
高级用法
# 高级用法可根据具体任务需求,对模型进行微调或结合其他技术使用。例如,在特定数据集上进行进一步训练以适应特定领域的任务。
# 这里假设我们有一个自定义的训练数据集 custom_dataset,包含 anchor、positive 和 negative 样本
from sentence_transformers import SentenceTransformer, InputExample, losses
from torch.utils.data import DataLoader
# 加载模型
model = SentenceTransformer("mertcobanov/mpnet-base-all-nli-triplet-turkish-v3")
# 准备自定义训练数据
custom_dataset = [
InputExample(texts=['anchor sentence 1', 'positive sentence 1', 'negative sentence 1']),
InputExample(texts=['anchor sentence 2', 'positive sentence 2', 'negative sentence 2']),
# 更多样本...
]
# 创建数据加载器
train_dataloader = DataLoader(custom_dataset, shuffle=True, batch_size=16)
# 定义损失函数
train_loss = losses.MultipleNegativesRankingLoss(model)
# 训练模型
model.fit(
train_objectives=[(train_dataloader, train_loss)],
epochs=10,
warmup_steps=100,
optimizer_params={'lr': 2e-05},
)
# 保存微调后的模型
model.save('fine_tuned_model')
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | 句子转换器 |
基础模型 | microsoft/mpnet-base |
最大序列长度 | 512 个词元 |
输出维度 | 768 维 |
相似度函数 | 余弦相似度 |
训练数据集 | all-nli-triplets-turkish |
语言 | 英语 |
许可证 | apache-2.0 |
模型来源
- 文档:Sentence Transformers 文档
- 仓库:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Sentence Transformers
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
评估
指标
指标 | all-nli-dev-turkish | all-nli-test-turkish |
---|---|---|
余弦准确率 | 0.7423 | 0.7503 |
训练详情
训练数据集
- 数据集:all-nli-triplets-turkish,版本 bff203b
- 大小:13,842 个训练样本
- 列:
anchor_translated
、positive_translated
和negative_translated
- 基于前1000个样本的近似统计信息:
| | anchor_translated | positive_translated | negative_translated |
|------|------|------|------|
| 类型 | 字符串 | 字符串 | 字符串 |
| 详情 |
- 最小:8 个词元
- 平均:13.42 个词元
- 最大:95 个词元
- 最小:8 个词元
- 平均:31.64 个词元
- 最大:93 个词元
- 最小:6 个词元
- 平均:32.03 个词元
- 最大:89 个词元
- 样本:
| anchor_translated | positive_translated | negative_translated |
|------|------|------|
|
Asyalı okul çocukları birbirlerinin omuzlarında oturuyor.
|Okul çocukları bir arada
|Asyalı fabrika işçileri oturuyor.
| |İnsanlar dışarıda.
|Arka planda resmi kıyafetler giymiş bir grup insan var ve beyaz gömlekli, haki pantolonlu bir adam toprak yoldan yeşil çimenlere atlıyor.
|Bir odada üç kişiyle birlikte büyük bir kamera tutan bir adam.
| |Bir adam dışarıda.
|Adam yarış sırasında yan sepetten bir su birikintisine düşer.
|Beyaz bir sarık sarmış gömleksiz bir adam bir ağaç gövdesine tırmanıyor.
| - 损失函数:
MultipleNegativesRankingLoss
,参数如下:
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
评估数据集
- 数据集:all-nli-triplets-turkish,版本 bff203b
- 大小:6,584 个评估样本
- 列:
anchor_translated
、positive_translated
和negative_translated
- 基于前1000个样本的近似统计信息:
| | anchor_translated | positive_translated | negative_translated |
|------|------|------|------|
| 类型 | 字符串 | 字符串 | 字符串 |
| 详情 |
- 最小:5 个词元
- 平均:42.62 个词元
- 最大:192 个词元
- 最小:5 个词元
- 平均:22.58 个词元
- 最大:77 个词元
- 最小:5 个词元
- 平均:22.07 个词元
- 最大:65 个词元
- 样本:
| anchor_translated | positive_translated | negative_translated |
|------|------|------|
|
Ayrıca, bu özel tüketim vergileri, diğer vergiler gibi, hükümetin ödeme zorunluluğunu sağlama yetkisini kullanarak belirlenir.
|Hükümetin ödeme zorlaması, özel tüketim vergilerinin nasıl hesaplandığını belirler.
|Özel tüketim vergileri genel kuralın bir istisnasıdır ve aslında GSYİH payına dayalı olarak belirlenir.
| |Gri bir sweatshirt giymiş bir sanatçı, canlı renklerde bir kasaba tablosu üzerinde çalışıyor.
|Bir ressam gri giysiler içinde bir kasabanın resmini yapıyor.
|Bir kişi bir beyzbol sopası tutuyor ve gelen bir atış için planda bekliyor.
| |İmkansız.
|Yapılamaz.
|Tamamen mümkün.
| - 损失函数:
MultipleNegativesRankingLoss
,参数如下:
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
训练超参数
非默认超参数
eval_strategy
:按步骤评估per_device_train_batch_size
:16per_device_eval_batch_size
:16learning_rate
:2e-05num_train_epochs
:10warmup_ratio
:0.1fp16
:Truebatch_sampler
:无重复采样
所有超参数
点击展开
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
训练日志
轮次 | 步骤 | 训练损失 | 验证损失 | all-nli-dev-turkish 余弦准确率 | all-nli-test-turkish 余弦准确率 |
---|---|---|---|---|---|
0 | 0 | - | - | 0.6092 | - |
0.1155 | 100 | 3.3654 | 2.9084 | 0.6624 | - |
0.2309 | 200 | 2.6321 | 1.7277 | 0.7395 | - |
0.3464 | 300 | 1.9629 | 1.5000 | 0.7512 | - |
0.4619 | 400 | 1.6662 | 1.4965 | 0.7494 | - |
0.5774 | 500 | 1.4712 | 1.5374 | 0.7418 | - |
0.6928 | 600 | 1.0429 | 1.6301 | 0.7360 | - |
0.8083 | 700 | 0.8995 | 2.1626 | 0.7044 | - |
0.9238 | 800 | 0.7269 | 2.0440 | 0.6996 | - |
1.0381 | 900 | 1.0584 | 1.6714 | 0.7438 | - |
1.1536 | 1000 | 1.1864 | 1.5326 | 0.7495 | - |
1.2691 | 1100 | 1.0193 | 1.4498 | 0.7518 | - |
1.3845 | 1200 | 0.8237 | 1.5399 | 0.7506 | - |
1.5 | 1300 | 0.8279 | 1.6747 | 0.7521 | - |
1.6155 | 1400 | 0.626 | 1.5776 | 0.7453 | - |
1.7309 | 1500 | 0.5396 | 1.8877 | 0.7139 | - |
1.8464 | 1600 | 0.4294 | 2.2258 | 0.6947 | - |
1.9619 | 1700 | 0.4988 | 1.8753 | 0.7204 | - |
2.0762 | 1800 | 0.6987 | 1.5408 | 0.7524 | - |
2.1917 | 1900 | 0.6684 | 1.4434 | 0.7618 | - |
2.3072 | 2000 | 0.6072 | 1.4840 | 0.7520 | - |
2.4226 | 2100 | 0.5081 | 1.5225 | 0.7561 | - |
2.5381 | 2200 | 0.5216 | 1.5280 | 0.7514 | - |
2.6536 | 2300 | 0.2627 | 1.8830 | 0.7227 | - |
2.7691 | 2400 | 0.2585 | 1.9529 | 0.7221 | - |
2.8845 | 2500 | 0.129 | 2.2323 | 0.7047 | - |
3.0 | 2600 | 0.1698 | 2.2904 | 0.7063 | - |
3.1143 | 2700 | 0.5559 | 1.6110 | 0.7553 | - |
3.2298 | 2800 | 0.4356 | 1.5544 | 0.7508 | - |
3.3453 | 2900 | 0.3886 | 1.5437 | 0.7539 | - |
3.4607 | 3000 | 0.3573 | 1.6262 | 0.7539 | - |
3.5762 | 3100 | 0.2652 | 1.8391 | 0.7321 | - |
3.6917 | 3200 | 0.0765 | 2.0359 | 0.7186 | - |
3.8072 | 3300 | 0.0871 | 2.0946 | 0.7262 | - |
3.9226 | 3400 | 0.0586 | 2.2168 | 0.7093 | - |
4.0370 | 3500 | 0.1755 | 1.7567 | 0.7462 | - |
4.1524 | 3600 | 0.3397 | 1.7735 | 0.7442 | - |
4.2679 | 3700 | 0.3067 | 1.7475 | 0.7497 | - |
4.3834 | 3800 | 0.246 | 1.7075 | 0.7476 | - |
4.4988 | 3900 | 0.253 | 1.7648 | 0.7483 | - |
4.6143 | 4000 | 0.1223 | 1.9139 | 0.7246 | - |
4.7298 | 4100 | 0.0453 | 2.1138 | 0.7152 | - |
4.8453 | 4200 | 0.0241 | 2.2354 | 0.7240 | - |
4.9607 | 4300 | 0.0363 | 2.3080 | 0.7251 | - |
5.0751 | 4400 | 0.1897 | 1.7394 | 0.7494 | - |
5.1905 | 4500 | 0.2114 | 1.6929 | 0.7524 | - |
5.3060 | 4600 | 0.2101 | 1.7402 | 0.7556 | - |
5.4215 | 4700 | 0.1471 | 1.7990 | 0.7445 | - |
5.5370 | 4800 | 0.1783 | 1.8060 | 0.7456 | - |
5.6524 | 4900 | 0.0215 | 2.0118 | 0.7325 | - |
5.7679 | 5000 | 0.0083 | 2.0766 | 0.7265 | - |
5.8834 | 5100 | 0.0138 | 2.2054 | 0.7201 | - |
5.9988 | 5200 | 0.0144 | 2.1667 | 0.7164 | - |
6.1132 | 5300 | 0.2023 | 1.7309 | 0.7543 | - |
6.2286 | 5400 | 0.1356 | 1.6685 | 0.7622 | - |
6.3441 | 5500 | 0.1307 | 1.7292 | 0.7527 | - |
6.4596 | 5600 | 0.1222 | 1.8403 | 0.7435 | - |
6.5751 | 5700 | 0.1049 | 1.8456 | 0.7394 | - |
6.6905 | 5800 | 0.0051 | 1.9898 | 0.7362 | - |
6.8060 | 5900 | 0.0131 | 2.0532 | 0.7310 | - |
6.9215 | 6000 | 0.0132 | 2.2237 | 0.7186 | - |
7.0358 | 6100 | 0.0453 | 1.8965 | 0.7397 | - |
7.1513 | 6200 | 0.1109 | 1.7195 | 0.7550 | - |
7.2667 | 6300 | 0.1002 | 1.7547 | 0.7530 | - |
7.3822 | 6400 | 0.0768 | 1.7701 | 0.7433 | - |
7.4977 | 6500 | 0.0907 | 1.8472 | 0.7406 | - |
7.6132 | 6600 | 0.038 | 1.9162 | 0.7377 | - |
7.7286 | 6700 | 0.0151 | 1.9407 | 0.7312 | - |
7.8441 | 6800 | 0.0087 | 1.9657 | 0.7289 | - |
7.9596 | 6900 | 0.0104 | 2.0302 | 0.7227 | - |
8.0739 | 7000 | 0.0727 | 1.8692 | 0.7514 | - |
8.1894 | 7100 | 0.0733 | 1.8039 | 0.7520 | - |
8.3048 | 7200 | 0.0728 | 1.7400 | 0.7539 | - |
8.4203 | 7300 | 0.0537 | 1.8062 | 0.7461 | - |
8.5358 | 7400 | 0.059 | 1.8469 | 0.7489 | - |
8.6513 | 7500 | 0.0089 | 1.9033 | 0.7403 | - |
8.7667 | 7600 | 0.0034 | 1.9683 | 0.7354 | - |
8.8822 | 7700 | 0.0018 | 2.0075 | 0.7366 | - |
8.9977 | 7800 | 0.0023 | 2.0646 | 0.7322 | - |
9.1120 | 7900 | 0.0642 | 1.9063 | 0.7430 | - |
9.2275 | 8000 | 0.0596 | 1.8492 | 0.7468 | - |
9.3430 | 8100 | 0.0479 | 1.8180 | 0.7517 | - |
9.4584 | 8200 | 0.0561 | 1.8122 | 0.7468 | - |
9.5739 | 8300 | 0.0311 | 1.8528 | 0.7456 | - |
9.6894 | 8400 | 0.0069 | 1.8778 | 0.7447 | - |
9.8048 | 8500 | 0.0027 | 1.8989 | 0.7423 | - |
9.9203 | 8600 | 0.0093 | 1.9089 | 0.7423 | - |
9.9896 | 8660 | - | - | - | 0.7503 |
框架版本
- Python: 3.10.14
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.3.0
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
🔧 技术细节
该模型基于 Sentence Transformers
库,使用 MultipleNegativesRankingLoss
损失函数在 all-nli-triplets-turkish
数据集上对 microsoft/mpnet-base
模型进行微调。通过将句子映射到768维的密集向量空间,利用余弦相似度计算句子之间的语义相似度。
📄 许可证
本模型使用 apache-2.0
许可证。
📚 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98