Word Order Jina
这是一个基于jina-embeddings-v2-base-en微调的句子转换器模型,用于生成句子嵌入向量并计算语义相似度。
下载量 37
发布时间 : 12/3/2024
模型简介
该模型可将句子和段落映射到768维稠密向量空间,适用于语义文本相似度、语义搜索、复述挖掘、文本分类、聚类等任务。
模型特点
高效语义编码
能够将句子和段落高效地编码为768维稠密向量
多重负例训练
使用多重负例排序损失进行训练,提高模型区分相似句子的能力
混合数据集训练
结合word_orders和negation_dataset两个数据集进行训练,增强模型理解能力
模型能力
计算句子相似度
生成文本嵌入向量
语义搜索
文本分类
文本聚类
使用案例
信息检索
语义搜索
根据查询语句的语义而非关键词匹配来检索相关文档
提高搜索结果的相关性和准确性
文本分析
文本聚类
将语义相似的文档自动分组
帮助发现文档集合中的主题结构
🚀 基于jinaai/jina-embeddings-v2-base-en的句子转换器
这是一个基于 sentence-transformers 的模型,它在 word_orders 和 negation_dataset 数据集上对 jinaai/jina-embeddings-v2-base-en 进行了微调。该模型可以将句子和段落映射到一个768维的密集向量空间,可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等任务。
🚀 快速开始
本模型是基于 sentence-transformers
库的,下面将介绍如何使用它。
✨ 主要特性
- 基于
jinaai/jina-embeddings-v2-base-en
模型进行微调。 - 能够将句子和段落映射到768维的密集向量空间。
- 可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等多种任务。
📦 安装指南
首先,你需要安装 sentence-transformers
库:
pip install -U sentence-transformers
💻 使用示例
基础用法
安装好库之后,你可以加载这个模型并进行推理:
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载模型
model = SentenceTransformer("bwang0911/word-order-jina")
# 进行推理
sentences = [
'Paint preserves wood',
'Coating protects timber',
'timber coating protects',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | 句子转换器 |
基础模型 | jinaai/jina-embeddings-v2-base-en |
最大序列长度 | 128个词元 |
输出维度 | 768维 |
相似度函数 | 余弦相似度 |
训练数据集 | word_orders、negation_dataset |
语言 | 英语 |
模型来源
- 文档:Sentence Transformers 文档
- 仓库:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Sentence Transformers
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: JinaBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
训练详情
训练数据集
word_orders
- 数据集:word_orders,版本 99609ac
- 大小:1002 个训练样本
- 列:
anchor
、pos
和neg
- 基于前1000个样本的近似统计信息:
anchor pos neg 类型 字符串 字符串 字符串 详情 - 最小:5 个词元
- 平均:12.34 个词元
- 最大:32 个词元
- 最小:5 个词元
- 平均:12.1 个词元
- 最大:30 个词元
- 最小:5 个词元
- 平均:11.51 个词元
- 最大:24 个词元
- 样本:
anchor pos neg The river flows from the mountains to the sea
Water travels from mountain peaks to ocean
The river flows from the sea to the mountains
Train departs London for Paris
Railway journey from London heading to Paris
Train departs Paris for London
Cargo ship sails from Shanghai to Singapore
Maritime route Shanghai to Singapore
Cargo ship sails from Singapore to Shanghai
- 损失函数:
MultipleNegativesRankingLoss
,参数如下:{ "scale": 20, "similarity_fct": "cos_sim" }
negation_dataset
- 数据集:negation_dataset,版本 cd02256
- 大小:10000 个训练样本
- 列:
anchor
、entailment
和negative
- 基于前1000个样本的近似统计信息:
anchor entailment negative 类型 字符串 字符串 字符串 详情 - 最小:6 个词元
- 平均:16.48 个词元
- 最大:44 个词元
- 最小:4 个词元
- 平均:9.63 个词元
- 最大:31 个词元
- 最小:5 个词元
- 平均:10.46 个词元
- 最大:32 个词元
- 样本:
anchor entailment negative Two young girls are playing outside in a non-urban environment.
Two girls are playing outside.
Two girls are not playing outside.
A man with a red shirt is watching another man who is standing on top of a attached cart filled to the top.
A man is standing on top of a cart.
A man is not standing on top of a cart.
A man in a blue shirt driving a Segway type vehicle.
A person is riding a motorized vehicle.
A person is not riding a motorized vehicle.
- 损失函数:
MultipleNegativesRankingLoss
,参数如下:{ "scale": 20, "similarity_fct": "cos_sim" }
训练超参数
非默认超参数
per_device_train_batch_size
:128warmup_ratio
:0.1fp16
:Truebatch_sampler
:no_duplicates
所有超参数
点击展开
overwrite_output_dir
:Falsedo_predict
:Falseeval_strategy
:noprediction_loss_only
:Trueper_device_train_batch_size
:128per_device_eval_batch_size
:8per_gpu_train_batch_size
:Noneper_gpu_eval_batch_size
:Nonegradient_accumulation_steps
:1eval_accumulation_steps
:Nonetorch_empty_cache_steps
:Nonelearning_rate
:5e-05weight_decay
:0.0adam_beta1
:0.9adam_beta2
:0.999adam_epsilon
:1e-08max_grad_norm
:1.0num_train_epochs
:3max_steps
:-1lr_scheduler_type
:linearlr_scheduler_kwargs
:{}warmup_ratio
:0.1warmup_steps
:0log_level
:passivelog_level_replica
:warninglog_on_each_node
:Truelogging_nan_inf_filter
:Truesave_safetensors
:Truesave_on_each_node
:Falsesave_only_model
:Falserestore_callback_states_from_checkpoint
:Falseno_cuda
:Falseuse_cpu
:Falseuse_mps_device
:Falseseed
:42data_seed
:Nonejit_mode_eval
:Falseuse_ipex
:Falsebf16
:Falsefp16
:Truefp16_opt_level
:O1half_precision_backend
:autobf16_full_eval
:Falsefp16_full_eval
:Falsetf32
:Nonelocal_rank
:0ddp_backend
:Nonetpu_num_cores
:Nonetpu_metrics_debug
:Falsedebug
:[]dataloader_drop_last
:Falsedataloader_num_workers
:0dataloader_prefetch_factor
:Nonepast_index
:-1disable_tqdm
:Falseremove_unused_columns
:Truelabel_names
:Noneload_best_model_at_end
:Falseignore_data_skip
:Falsefsdp
:[]fsdp_min_num_params
:0fsdp_config
:{'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
:Noneaccelerator_config
:{'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
:Nonelabel_smoothing_factor
:0.0optim
:adamw_torchoptim_args
:Noneadafactor
:Falsegroup_by_length
:Falselength_column_name
:lengthddp_find_unused_parameters
:Noneddp_bucket_cap_mb
:Noneddp_broadcast_buffers
:Falsedataloader_pin_memory
:Truedataloader_persistent_workers
:Falseskip_memory_metrics
:Trueuse_legacy_prediction_loop
:Falsepush_to_hub
:Falseresume_from_checkpoint
:Nonehub_model_id
:Nonehub_strategy
:every_savehub_private_repo
:Falsehub_always_push
:Falsegradient_checkpointing
:Falsegradient_checkpointing_kwargs
:Noneinclude_inputs_for_metrics
:Falseinclude_for_metrics
:[]eval_do_concat_batches
:Truefp16_backend
:autopush_to_hub_model_id
:Nonepush_to_hub_organization
:Nonemp_parameters
:auto_find_batch_size
:Falsefull_determinism
:Falsetorchdynamo
:Noneray_scope
:lastddp_timeout
:1800torch_compile
:Falsetorch_compile_backend
:Nonetorch_compile_mode
:Nonedispatch_batches
:Nonesplit_batches
:Noneinclude_tokens_per_second
:Falseinclude_num_input_tokens_seen
:Falseneftune_noise_alpha
:Noneoptim_target_modules
:Nonebatch_eval_metrics
:Falseeval_on_start
:Falseuse_liger_kernel
:Falseeval_use_gather_object
:Falseprompts
:Nonebatch_sampler
:no_duplicatesmulti_dataset_batch_sampler
:proportional
训练日志
轮次 | 步数 | 训练损失 |
---|---|---|
0.1149 | 10 | 2.0411 |
0.2299 | 20 | 1.5167 |
0.3448 | 30 | 0.64 |
0.4598 | 40 | 0.6058 |
0.5747 | 50 | 0.6042 |
0.6897 | 60 | 0.4193 |
0.8046 | 70 | 0.5208 |
0.9195 | 80 | 0.4864 |
1.0345 | 90 | 0.4145 |
1.1494 | 100 | 0.69 |
1.2644 | 110 | 0.9602 |
1.3793 | 120 | 0.2539 |
1.4943 | 130 | 0.2558 |
1.6092 | 140 | 0.2769 |
1.7241 | 150 | 0.2154 |
1.8391 | 160 | 0.293 |
1.9540 | 170 | 0.2598 |
2.0690 | 180 | 0.2113 |
2.1839 | 190 | 0.9366 |
2.2989 | 200 | 0.2121 |
2.4138 | 210 | 0.1486 |
2.5287 | 220 | 0.1765 |
2.6437 | 230 | 0.1438 |
2.7586 | 240 | 0.1589 |
2.8736 | 250 | 0.1869 |
2.9885 | 260 | 0.1682 |
框架版本
- Python:3.10.12
- Sentence Transformers:3.3.1
- Transformers:4.46.0
- PyTorch:2.5.1+cu124
- Accelerate:1.1.1
- Datasets:3.1.0
- Tokenizers:0.20.1
📄 许可证
文档中未提及相关许可证信息。
🔧 技术细节
引用
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98