Maux Gte Persian V2
这是一个基于Alibaba-NLP/gte-multilingual-base模型微调的句子转换器模型,用于语义文本相似度等任务。
下载量 1,243
发布时间 : 12/25/2024
模型简介
该模型将句子和段落映射到768维密集向量空间,可用于语义文本相似度、语义搜索、复述挖掘、文本分类、聚类等任务。
模型特点
高维向量表示
将文本映射到768维密集向量空间,捕捉深层语义特征
多语言支持
基于gte-multilingual-base模型,支持包括波斯语在内的多种语言
长文本处理
最大序列长度达8192个标记,适合处理长段落文本
高效相似度计算
使用余弦相似度进行快速准确的文本相似度评估
模型能力
语义文本相似度计算
语义搜索
文本聚类
文本分类
复述挖掘
使用案例
信息检索
相似问题匹配
在问答系统中找到与用户提问语义相似的问题
内容管理
文档去重
识别语义相似的文档进行合并或去重处理
推荐系统
相关内容推荐
根据用户浏览内容推荐语义相似的其他内容
🚀 基于Alibaba-NLP/gte-multilingual-base的句子转换器
这是一个基于 sentence-transformers 框架,在 maux-gte-10k-public 数据集上对 Alibaba-NLP/gte-multilingual-base 模型进行微调得到的模型。它可以将句子和段落映射到一个768维的密集向量空间,可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等任务。
🚀 快速开始
本模型是基于 sentence-transformers
框架微调得到的,下面将介绍如何使用该模型进行推理。
✨ 主要特性
- 多用途:可用于语义文本相似度计算、语义搜索、释义挖掘、文本分类、聚类等多种自然语言处理任务。
- 高维向量表示:能够将句子和段落映射到768维的密集向量空间,有助于更精确地捕捉语义信息。
📦 安装指南
首先,你需要安装 sentence-transformers
库:
pip install -U sentence-transformers
💻 使用示例
基础用法
安装完成后,你可以加载模型并进行推理:
from sentence_transformers import SentenceTransformer
# 从 🤗 Hub 下载模型
model = SentenceTransformer("xmanii/maux-gte-persian-v2")
# 进行推理
sentences = [
'تفاوت بین کشاورزی ارگانیک و کشاورزی سنتی چیست؟',
'بازارهای کشاورزان مکان\u200cهای محبوبی برای خرید محصولات ارگانیک به طور مستقیم از کشاورزان محلی هستند.',
'تاریخ حفظ آب به تمدن\u200cهای باستانی برمی\u200cگردد که سیستم\u200cهای آبیاری را توسعه دادند.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 获取嵌入向量的相似度得分
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 详细文档
模型详情
模型描述
属性 | 详情 |
---|---|
模型类型 | 句子转换器 |
基础模型 | Alibaba-NLP/gte-multilingual-base |
最大序列长度 | 8192 个词元 |
输出维度 | 768 维 |
相似度函数 | 余弦相似度 |
训练数据集 | maux-gte-10k-public |
模型来源
- 文档:Sentence Transformers 文档
- 代码仓库:GitHub 上的 Sentence Transformers
- Hugging Face:Hugging Face 上的 Sentence Transformers
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
评估
指标
语义相似度
使用 EmbeddingSimilarityEvaluator
进行评估:
指标 | 值 |
---|---|
pearson_cosine | 0.9488 |
spearman_cosine | 0.9479 |
训练详情
训练数据集
maux-gte-10k-public
- 数据集:maux-gte-10k-public,版本为 e20c689
- 大小:10,000 个训练样本
- 列信息:包含
persian_question
、persian_answer
和score
三列 - 基于前1000个样本的近似统计信息:
| | 波斯语问题 | 波斯语答案 | 得分 |
|------|------|------|------|
| 类型 | 字符串 | 字符串 | 浮点数 |
| 详情 |
- 最小:6 个词元
- 平均:14.7 个词元
- 最大:32 个词元
- 最小:13 个词元
- 平均:29.01 个词元
- 最大:78 个词元
- 最小:0.02
- 平均:0.52
- 最大:1.0
- 样本示例:
| 波斯语问题 | 波斯语答案 | 得分 |
|------|------|------|
|
آیا میتوانید فرآیند برنامهریزی مسیر ربات را توضیح دهید؟
|رباتها میتوانند برنامهنویسی شوند تا مجموعهای از وظایف را انجام دهند، از اقدامهای تکراری ساده تا فرآیندهای پیچیده تصمیمگیری.
|0.27999999999999997
| |آیا انسانها میتوانند در مریخ زندگی کنند؟
|مریخ چهارمین سیاره از خورشید است و به دلیل ظاهر سرخش اغلب به سیاره سرخ معروف است.
|0.16
| |عناصر کلیدی ترکیب در هنر انتزاعی چیست؟
|تاریخ هنر انتزاعی به اوایل قرن بیستم برمیگردد، با پیشگامانی مانند واسیلی کاندینسکی و پیت موندریان.
|0.36
| - 损失函数:
CosineSimilarityLoss
,参数如下:
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
评估数据集
评估数据集与训练数据集相同,同样为 maux-gte-10k-public
,相关信息与训练数据集一致。
训练超参数
非默认超参数
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: True
所有超参数
点击展开
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
训练日志
轮数 | 步数 | 训练损失 | 验证损失 | spearman_cosine |
---|---|---|---|---|
0.1597 | 50 | 0.0663 | - | - |
0.3195 | 100 | 0.0409 | 0.0298 | 0.7983 |
0.4792 | 150 | 0.0342 | - | - |
0.6390 | 200 | 0.0294 | 0.0230 | 0.8464 |
0.7987 | 250 | 0.0296 | - | - |
0.9585 | 300 | 0.0298 | 0.0220 | 0.8610 |
1.1182 | 350 | 0.0249 | - | - |
1.2780 | 400 | 0.0237 | 0.0230 | 0.8745 |
1.4377 | 450 | 0.0241 | - | - |
1.5974 | 500 | 0.0218 | 0.0166 | 0.8900 |
1.7572 | 550 | 0.0227 | - | - |
1.9169 | 600 | 0.0231 | 0.0148 | 0.9045 |
2.0767 | 650 | 0.0196 | - | - |
2.2364 | 700 | 0.0173 | 0.0131 | 0.9179 |
2.3962 | 750 | 0.0172 | - | - |
2.5559 | 800 | 0.0172 | 0.0119 | 0.9231 |
2.7157 | 850 | 0.0167 | - | - |
2.8754 | 900 | 0.0172 | 0.0120 | 0.9291 |
3.0351 | 950 | 0.0175 | - | - |
3.1949 | 1000 | 0.013 | 0.0100 | 0.9362 |
3.3546 | 1050 | 0.0128 | - | - |
3.5144 | 1100 | 0.0129 | 0.0101 | 0.9390 |
3.6741 | 1150 | 0.0134 | - | - |
3.8339 | 1200 | 0.0137 | 0.0095 | 0.9430 |
3.9936 | 1250 | 0.0133 | - | - |
4.1534 | 1300 | 0.0109 | 0.0096 | 0.9449 |
4.3131 | 1350 | 0.0114 | - | - |
4.4728 | 1400 | 0.0111 | 0.0083 | 0.9479 |
4.6326 | 1450 | 0.0107 | - | - |
4.7923 | 1500 | 0.0122 | 0.0085 | 0.9479 |
4.9521 | 1550 | 0.0112 | - | - |
加粗行表示保存的检查点。
框架版本
- Python: 3.10.8
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
📄 许可证
文档中未提及相关许可证信息。
📖 引用
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98