Nitibench Ccl Human Finetuned Bge M3
模型简介
这是一个针对泰语法律文本优化的句子嵌入模型,特别适用于法律条款检索和相似度计算任务。模型在WangchanX-Legal-ThaiCCL-RAG数据集上进行了微调,提高了在法律领域的表现。
模型特点
多模态检索能力
同时支持稠密向量检索、词法匹配和多向量交互三种检索方式
法律领域优化
针对泰语法律文本进行了专门微调,在法律条款检索任务上表现优异
自动化微调流程
采用完全自动化的数据准备和模型微调流程,确保了模型质量
模型能力
生成文本嵌入
计算句子相似度
法律条款检索
词法权重分析
多向量交互匹配
使用案例
法律信息检索
法律条款匹配
根据用户查询自动匹配相关法律条款
在NitiBench-CCL数据集上达到HR@10 0.938的高准确率
税务咨询支持
辅助税务咨询系统提供精准的法规参考
在NitiBench-Tax数据集上HR@10达到0.8
智能客服
法律问答系统
为金融机构提供自动化的法律问题解答
🚀 人工微调的BGE - M3 CCL模型
本项目是一个用于句子相似度计算的模型,基于BAAI/bge - m3
模型在特定法律数据集上微调而来,能有效处理法律相关的文本相似度计算任务,为法律领域的信息检索和问答系统提供支持。
🚀 快速开始
本模型是在airesearch/WangchanX - Legal - ThaiCCL - RAG
查询集上微调的[BAAI/bge - m3
](https://huggingface.co/BAAI/bge - m3)模型。你可以按照以下步骤使用该模型:
- 安装必要的库:
git clone https://github.com/FlagOpen/FlagEmbedding.git
cd FlagEmbedding
pip install -e .
或者:
pip install -U FlagEmbedding
✨ 主要特性
微调细节
除了原始的airesearch/WangchanX - Legal - ThaiCCL - RAG
数据集(该数据集需要人工重新排序并移除不相关文档),本模型是在完全自动化的环境中进行微调的。具体步骤如下:
- 使用[
BAAI/bge - m3
](https://huggingface.co/BAAI/bge - m3)模型,基于阈值分数0.8检索N个正例法律条文。 - 在这N个文档中,使用[
BAAI/bge - reranker - v2 - m3
](https://huggingface.co/BAAI/bge - reranker - v2 - m3)模型对文档进行重新排序,并过滤掉重新排序分数低于0.8的文档,得到最终的正例法律条文。 - 使用步骤2中的正例数据对BGE - M3模型进行微调。
模型性能
数据集 | Top - K | HR@k | Multi HR@k | Recall@k | MRR@k | Multi MRR@k |
---|---|---|---|---|---|---|
NitiBench - CCL | 1 | 0.735 | – | 0.735 | 0.735 | – |
NitiBench - CCL | 5 | 0.906 | – | 0.906 | 0.805 | – |
NitiBench - CCL | 10 | 0.938 | – | 0.938 | 0.809 | – |
NitiBench - Tax | 1 | 0.480 | 0.140 | 0.255 | 0.480 | 0.255 |
NitiBench - Tax | 5 | 0.740 | 0.220 | 0.411 | 0.565 | 0.320 |
NitiBench - Tax | 10 | 0.800 | 0.280 | 0.499 | 0.574 | 0.333 |
💻 使用示例
基础用法
为文本生成嵌入向量
- 密集嵌入向量
from FlagEmbedding import BGEM3FlagModel
model = BGEM3FlagModel('VISAI-AI/nitibench-ccl-human-finetuned-bge-m3',
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
sentences_1 = ["What is BGE M3?", "Defination of BM25"]
sentences_2 = ["BGE M3 is an embedding model supporting dense retrieval, lexical matching and multi-vector interaction.",
"BM25 is a bag-of-words retrieval function that ranks a set of documents based on the query terms appearing in each document"]
embeddings_1 = model.encode(sentences_1,
batch_size=12,
max_length=8192, # If you don't need such a long length, you can set a smaller value to speed up the encoding process.
)['dense_vecs']
embeddings_2 = model.encode(sentences_2)['dense_vecs']
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
# [[0.6265, 0.3477], [0.3499, 0.678 ]]
你也可以使用sentence - transformers
和huggingface transformers
库来生成密集嵌入向量。详情请参考baai_general_embedding。
- 稀疏嵌入向量(词法权重)
from FlagEmbedding import BGEM3FlagModel
model = BGEM3FlagModel('VISAI-AI/nitibench-ccl-human-finetuned-bge-m3', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
sentences_1 = ["สถาบันทางการเงินสามารถลงทุนในหลักทรัพย์ เป็นอัตราส่วนร้อยละสิบของเงินกองทุนทั้งหมดของสถาบันการเงินนั้น สำหรับการถือหรือมีหุ้นในทุกบริษัทรวมกันได้หรือไม่?",
"ในกรณีที่ธนาคารแห่งประเทศไทยมีคำสั่งปิดกิจการของสถาบันการเงิน เนื่องสถาบันการเงินดำรงเงินกองทุนต่ำกว่าร้อยละสามสิบห้าของอัตราตามที่กำหนด จะต้องนำเสนอต่อบุคคลใดหรือหน่วยงานใดเพื่อเพิกถอนใบอนุญาตของสถาบันการเงินนั้น"]
sentences_2 = ["พระราชบัญญัติธุรกิจสถาบันการเงิน พ.ศ. 2551 มาตรา 33 ภายใต้บังคับมาตรา 34 และมาตรา 35 ให้สถาบันการเงินลงทุนในหลักทรัพย์เพื่อเป็นกรรมสิทธิ์ของตนได้ ตามหลักเกณฑ์ที่ธนาคารแห่งประเทศไทยประกาศกำหนด",
"พระราชบัญญัติธุรกิจสถาบันการเงิน พ.ศ. 2551 มาตรา 97 ในกรณีที่สถาบันการเงินดำรงเงินกองทุนต่ำกว่าร้อยละสามสิบห้าของอัตราตามที่กำหนดในมาตรา 30 ให้ธนาคารแห่งประเทศไทยมีคำสั่งปิดกิจการของสถาบันการเงินนั้น เว้นแต่ในกรณีที่ธนาคารแห่งประเทศไทยเห็นว่าการมีคำสั่งปิดกิจการจะก่อให้เกิดผลกระทบ หรือความเสียหายต่อระบบเศรษฐกิจโดยรวมอย่างรุนแรง ธนาคารแห่งประเทศไทยอาจยังไม่สั่งปิดกิจการของสถาบันการเงินก็ได้\nเมื่อธนาคารแห่งประเทศไทยมีคำสั่งปิดกิจการตามวรรคหนึ่งแล้ว ให้เสนอรัฐมนตรีเพิกถอนใบอนุญาตของสถาบันการเงินนั้น"]
output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=False)
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=False)
# you can see the weight for each token:
print(model.convert_id_to_token(output_1['lexical_weights']))
# [{'สถาบัน': 0.126, 'การเงิน': 0.10956, 'สามารถ': 0.07, 'ลงทุน': 0.1417, 'ใน': 0.01715, 'หลัก': 0.0758, 'ทรัพย์': 0.1702, 'อัตรา': 0.04926, 'ส่วน': 0.06107, 'ร้อยละ': 0.09, 'สิบ': 0.14, 'เงิน': 0.05026, 'กองทุน': 0.1205, 'ทั้งหมด': 0.03644, 'ถือ': 0.0987, 'หุ้น': 0.0928, 'ในทุก': 0.04883, 'บริษัท': 0.0999, 'รวม': 0.0835, 'กันได้': 0.09814, 'หรือไม่': 0.0398},
# {'กรณี': 0.0323, 'ธนาคาร': 0.08136, 'แห่งประเทศไทย': 0.151, 'คําสั่ง': 0.161, 'ปิด': 0.1583, 'กิจการ': 0.1199, 'สถาบัน': 0.08545, 'การเงิน': 0.1334, 'เนื่อง': 0.006992, 'ดํารง': 0.1523, 'เงิน': 0.12146, 'กองทุน': 0.1776, 'ต่ํากว่า': 0.1335, 'ร้อยละ': 0.10126, 'สาม': 0.02498, 'ห้า': 0.1158, 'อัตรา': 0.12256, 'กําหนด': 0.0572, 'จะต้อง': 0.07074, 'นําเสนอ': 0.1752, 'ต่อ': 0.0696, 'บุคคล': 0.0817, 'ใด': 0.0577, 'หรือ': 0.0248, 'หน่วยงาน': 0.076, 'เพ': 0.02034, 'ิก': 0.0921, 'ถอน': 0.1582, 'ใบ': 0.04617, 'อนุญาต': 0.179}]
# compute the scores via lexical mathcing
lexical_scores = model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_2['lexical_weights'][0])
print(lexical_scores)
# 0.10838508605957031
print(model.compute_lexical_matching_score(output_1['lexical_weights'][0], output_1['lexical_weights'][1]))
# 0.06803131103515625
- 多向量(ColBERT)
from FlagEmbedding import BGEM3FlagModel
model = BGEM3FlagModel('VISAI-AI/nitibench-ccl-human-finetuned-bge-m3', use_fp16=True)
sentences_1 = ["สถาบันทางการเงินสามารถลงทุนในหลักทรัพย์ เป็นอัตราส่วนร้อยละสิบของเงินกองทุนทั้งหมดของสถาบันการเงินนั้น สำหรับการถือหรือมีหุ้นในทุกบริษัทรวมกันได้หรือไม่?",
"ในกรณีที่ธนาคารแห่งประเทศไทยมีคำสั่งปิดกิจการของสถาบันการเงิน เนื่องสถาบันการเงินดำรงเงินกองทุนต่ำกว่าร้อยละสามสิบห้าของอัตราตามที่กำหนด จะต้องนำเสนอต่อบุคคลใดหรือหน่วยงานใดเพื่อเพิกถอนใบอนุญาตของสถาบันการเงินนั้น"]
sentences_2 = ["พระราชบัญญัติธุรกิจสถาบันการเงิน พ.ศ. 2551 มาตรา 33 ภายใต้บังคับมาตรา 34 และมาตรา 35 ให้สถาบันการเงินลงทุนในหลักทรัพย์เพื่อเป็นกรรมสิทธิ์ของตนได้ ตามหลักเกณฑ์ที่ธนาคารแห่งประเทศไทยประกาศกำหนด",
"พระราชบัญญัติธุรกิจสถาบันการเงิน พ.ศ. 2551 มาตรา 97 ในกรณีที่สถาบันการเงินดำรงเงินกองทุนต่ำกว่าร้อยละสามสิบห้าของอัตราตามที่กำหนดในมาตรา 30 ให้ธนาคารแห่งประเทศไทยมีคำสั่งปิดกิจการของสถาบันการเงินนั้น เว้นแต่ในกรณีที่ธนาคารแห่งประเทศไทยเห็นว่าการมีคำสั่งปิดกิจการจะก่อให้เกิดผลกระทบ หรือความเสียหายต่อระบบเศรษฐกิจโดยรวมอย่างรุนแรง ธนาคารแห่งประเทศไทยอาจยังไม่สั่งปิดกิจการของสถาบันการเงินก็ได้\nเมื่อธนาคารแห่งประเทศไทยมีคำสั่งปิดกิจการตามวรรคหนึ่งแล้ว ให้เสนอรัฐมนตรีเพิกถอนใบอนุญาตของสถาบันการเงินนั้น"]
output_1 = model.encode(sentences_1, return_dense=True, return_sparse=True, return_colbert_vecs=True)
output_2 = model.encode(sentences_2, return_dense=True, return_sparse=True, return_colbert_vecs=True)
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][0]))
print(model.colbert_score(output_1['colbert_vecs'][0], output_2['colbert_vecs'][1]))
# tensor(0.5813)
# tensor(0.5718)
计算文本对的得分
输入一个文本对列表,你可以得到通过不同方法计算的得分。
from FlagEmbedding import BGEM3FlagModel
model = BGEM3FlagModel('VISAI-AI/nitibench-ccl-human-finetuned-bge-m3', use_fp16=True)
sentences_1 = ["สถาบันทางการเงินสามารถลงทุนในหลักทรัพย์ เป็นอัตราส่วนร้อยละสิบของเงินกองทุนทั้งหมดของสถาบันการเงินนั้น สำหรับการถือหรือมีหุ้นในทุกบริษัทรวมกันได้หรือไม่?",
"ในกรณีที่ธนาคารแห่งประเทศไทยมีคำสั่งปิดกิจการของสถาบันการเงิน เนื่องสถาบันการเงินดำรงเงินกองทุนต่ำกว่าร้อยละสามสิบห้าของอัตราตามที่กำหนด จะต้องนำเสนอต่อบุคคลใดหรือหน่วยงานใดเพื่อเพิกถอนใบอนุญาตของสถาบันการเงินนั้น"]
sentences_2 = ["พระราชบัญญัติธุรกิจสถาบันการเงิน พ.ศ. 2551 มาตรา 33 ภายใต้บังคับมาตรา 34 และมาตรา 35 ให้สถาบันการเงินลงทุนในหลักทรัพย์เพื่อเป็นกรรมสิทธิ์ของตนได้ ตามหลักเกณฑ์ที่ธนาคารแห่งประเทศไทยประกาศกำหนด",
"พระราชบัญญัติธุรกิจสถาบันการเงิน พ.ศ. 2551 มาตรา 97 ในกรณีที่สถาบันการเงินดำรงเงินกองทุนต่ำกว่าร้อยละสามสิบห้าของอัตราตามที่กำหนดในมาตรา 30 ให้ธนาคารแห่งประเทศไทยมีคำสั่งปิดกิจการของสถาบันการเงินนั้น เว้นแต่ในกรณีที่ธนาคารแห่งประเทศไทยเห็นว่าการมีคำสั่งปิดกิจการจะก่อให้เกิดผลกระทบ หรือความเสียหายต่อระบบเศรษฐกิจโดยรวมอย่างรุนแรง ธนาคารแห่งประเทศไทยอาจยังไม่สั่งปิดกิจการของสถาบันการเงินก็ได้\nเมื่อธนาคารแห่งประเทศไทยมีคำสั่งปิดกิจการตามวรรคหนึ่งแล้ว ให้เสนอรัฐมนตรีเพิกถอนใบอนุญาตของสถาบันการเงินนั้น"]
sentence_pairs = [[i,j] for i in sentences_1 for j in sentences_2]
print(model.compute_score(sentence_pairs,
max_passage_length=128, # a smaller max length leads to a lower latency
weights_for_different_modes=[0.4, 0.2, 0.4])) # weights_for_different_modes(w) is used to do weighted sum: w[0]*dense_score + w[1]*sparse_score + w[2]*colbert_score
# {
# 'colbert': [0.5812647342681885, 0.5717734098434448, 0.6460118889808655, 0.8784525990486145],
# 'sparse': [0.1083984375, 0.07684326171875, 0.07061767578125, 0.314208984375],
# 'dense': [0.61865234375, 0.58935546875, 0.666015625, 0.8916015625],
# 'sparse+dense': [0.4485676884651184, 0.41851806640625, 0.4675496518611908, 0.6991373896598816],
# 'colbert+sparse+dense': [0.5016465187072754, 0.47982022166252136, 0.538934588432312, 0.7708634734153748]
# }
📄 许可证
本项目采用MIT许可证。
📚 参考引用
BibTeX
@misc{akarajaradwong2025nitibenchcomprehensivestudiesllm,
title={NitiBench: A Comprehensive Studies of LLM Frameworks Capabilities for Thai Legal Question Answering},
author={Pawitsapak Akarajaradwong and Pirat Pothavorn and Chompakorn Chaksangchaichot and Panuthep Tasawong and Thitiwat Nopparatbundit and Sarana Nutanong},
year={2025},
eprint={2502.10868},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.10868},
}
🙏 致谢
我们衷心感谢WangchanX项目赞助商——PTT、SCB和SCBX的慷慨支持,他们的资助使得本项目得以实现。同时,我们也非常感激与VISTEC的宝贵合作,这对项目的成功至关重要。
感谢Pirat Pothavorn在NitiBench数据集上对模型性能进行评估,感谢Supavish Punchun对模型进行微调。此外,我们感谢本开源项目的所有作者。
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98