🚀 ronanki/ml_use_512_MNR_10
这是一个 sentence-transformers 模型,它能将句子和段落映射到一个 512 维的密集向量空间,可用于聚类或语义搜索等任务。
🚀 快速开始
当你安装了 sentence-transformers 后,使用这个模型就变得很简单。首先,你需要安装 sentence-transformers
:
pip install -U sentence-transformers
然后,你可以按照以下方式使用该模型:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('ronanki/ml_use_512_MNR_10')
embeddings = model.encode(sentences)
print(embeddings)
✨ 主要特性
- 能够将句子和段落映射到 512 维的密集向量空间。
- 可用于聚类或语义搜索等任务。
📦 安装指南
使用以下命令安装所需的库:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('ronanki/ml_use_512_MNR_10')
embeddings = model.encode(sentences)
print(embeddings)
📚 详细文档
评估结果
要对该模型进行自动评估,请参考 Sentence Embeddings Benchmark:https://seb.sbert.net
训练
该模型使用以下参数进行训练:
数据加载器
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
,长度为 29,参数如下:
{'batch_size': 32}
损失函数
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,参数如下:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit() 方法的参数
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 2,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Dense({'in_features': 768, 'out_features': 512, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
引用与作者