🚀 mcontriever-base-msmarco
mcontriever-base-msmarco是一个句子转换器模型,它可以将句子和段落映射到768维的密集向量空间,可用于聚类或语义搜索等任务。
该模型是从facebook的mcontriever-msmarco模型转换而来。使用此模型时,请参考相关论文:Unsupervised Dense Information Retrieval with Contrastive Learning。
🚀 快速开始
本部分将介绍如何使用mcontriever-base-msmarco
模型进行句子嵌入。
📦 安装指南
若要使用该模型,需先安装sentence-transformers
库:
pip install -U sentence-transformers
💻 使用示例
基础用法
使用sentence-transformers
库调用模型:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('nthakur/mcontriever-base-msmarco')
embeddings = model.encode(sentences)
print(embeddings)
高级用法
若未安装sentence-transformers
库,可使用HuggingFace Transformers库调用模型。首先,将输入传递给Transformer模型,然后对上下文词嵌入应用正确的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('nthakur/mcontriever-base-msmarco')
model = AutoModel.from_pretrained('nthakur/mcontriever-base-msmarco')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果
要对该模型进行自动评估,请参考句子嵌入基准测试:https://seb.sbert.net
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 509, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用与作者
使用该模型时,请参考相关论文:Unsupervised Dense Information Retrieval with Contrastive Learning。