🚀 Wav2Vec2-Large-XLSR-53-or
本项目是在奥里亚语(odia)上对 facebook/wav2vec2-large-xlsr-53 进行微调得到的模型。使用该模型时,请确保输入的语音采样率为 16kHz。
模型信息
属性 |
详情 |
语言 |
奥里亚语(odia) |
数据集 |
Common Voice |
评估指标 |
词错误率(WER) |
标签 |
音频、自动语音识别、语音、xlsr 微调周 |
许可证 |
Apache-2.0 |
模型名称 |
odia XLSR Wav2Vec2 Large 2000 |
任务 |
语音识别(自动语音识别) |
测试集 WER |
54.6 |
🚀 快速开始
模型使用
本模型可以直接使用(无需语言模型),示例代码如下:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "or", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-or")
model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-or")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
模型评估
可以在 Common Voice 的奥里亚语测试数据上对模型进行评估,示例代码如下:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "or", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-or")
model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-or")
model.to("cuda")
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\\"\\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果:54.6 %
模型训练
使用了 Common Voice 的训练集、验证集和测试集进行训练、预测和测试。训练脚本可在 [https://github.com/rahul-art/wav2vec2_or] 找到。