🚀 示例ESPnet2自动语音识别模型
本项目是一个基于ESPnet2的自动语音识别模型示例,利用csj数据集进行训练,为语音识别任务提供了有效的解决方案。
🚀 快速开始
模型信息
此模型由kan-bayashi
使用espnet中的csj/asr1
配方进行训练。
模型名称为 kan-bayashi/csj_asr_train_asr_transformer_raw_char_sp_valid.acc.ave
,从 https://zenodo.org/record/4037458/ 导入。
演示:在ESPnet2中的使用方法
📄 许可证
本项目采用CC BY 4.0许可证。
📚 详细文档
引用ESPnet
如果你在研究中使用了ESPnet,可以按照以下方式进行引用:
BibTeX引用(会议论文)
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson {Enrique Yalta Soplin} and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
@inproceedings{hayashi2020espnet,
title={{Espnet-TTS}: Unified, reproducible, and integratable open source end-to-end text-to-speech toolkit},
author={Hayashi, Tomoki and Yamamoto, Ryuichi and Inoue, Katsuki and Yoshimura, Takenori and Watanabe, Shinji and Toda, Tomoki and Takeda, Kazuya and Zhang, Yu and Tan, Xu},
booktitle={Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={7654--7658},
year={2020},
organization={IEEE}
}
BibTeX引用(arXiv预印本)
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Enrique Yalta Soplin and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
📦 信息表格
属性 |
详情 |
模型类型 |
ESPnet2自动语音识别模型 |
训练数据 |
csj 数据集 |
许可证 |
CC BY 4.0 |