🚀 语音自动识别模型评估项目
本项目主要针对基于facebook/wav2vec2-large-xlsr-53-polish
模型在Common Voice波兰语测试集上进行评估,通过一系列处理流程计算字错率(WER),为语音自动识别相关研究和应用提供数据参考。
🚀 快速开始
环境准备
确保你已经安装了以下必要的库:
torchaudio
datasets
transformers
torch
代码运行
以下是在Common Voice波兰语测试集上进行评估的代码示例:
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
)
import torch
import re
import sys
model_name = "facebook/wav2vec2-large-xlsr-53-polish"
device = "cuda"
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"]'
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(model_name)
ds = load_dataset("common_voice", "pl", split="test", data_dir="./cv-corpus-6.1-2020-12-11")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
ds = ds.map(map_to_array)
def map_to_pred(batch):
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)
batch["target"] = batch["sentence"]
return batch
result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys()))
wer = load_metric("wer")
print(wer.compute(predictions=result["predicted"], references=result["target"]))
运行结果
运行上述代码后,得到的字错率(WER)结果为:24.6 %
💻 使用示例
基础用法
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
)
import torch
import re
import sys
model_name = "facebook/wav2vec2-large-xlsr-53-polish"
device = "cuda"
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"]'
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(model_name)
ds = load_dataset("common_voice", "pl", split="test", data_dir="./cv-corpus-6.1-2020-12-11")
resampler = torchaudio.transforms.Resample(orig_freq=48_000, new_freq=16_000)
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy()
batch["sampling_rate"] = resampler.new_freq
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("’", "'")
return batch
ds = ds.map(map_to_array)
def map_to_pred(batch):
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt")
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)
batch["target"] = batch["sentence"]
return batch
result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys()))
wer = load_metric("wer")
print(wer.compute(predictions=result["predicted"], references=result["target"]))
高级用法
此代码目前主要是基础的评估流程,若要进行高级拓展,例如更换不同的模型、调整参数等,可以参考以下示例:
model_name = "new_model_name"
model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2Processor.from_pretrained(model_name)
result = ds.map(map_to_pred, batched=True, batch_size=32, remove_columns=list(ds.features.keys()))
📄 许可证
本项目使用的许可证为Apache 2.0许可证。
📋 信息表格
属性 |
详情 |
模型类型 |
语音自动识别模型(Wav2Vec2ForCTC) |
训练数据 |
Common Voice波兰语数据集 |
评估指标 |
字错率(WER) |