🚀 XLSR Wav2Vec2 德语模型
本项目的 XLSR Wav2Vec2 德语模型,可用于自动语音识别任务,在 Common Voice 德语测试数据上有出色表现。
🚀 快速开始
本模型可在 Common Voice 的德语测试数据上进行评估,具体评估方式见下方代码示例。
✨ 主要特性
- 数据集:使用 Common Voice 数据集进行训练。
- 评估指标:使用字错率(WER)和字符错误率(CER)进行评估。
- 适用领域:适用于音频、自动语音识别等领域。
📦 安装指南
暂未提供相关安装步骤。
💻 使用示例
基础用法
以下代码展示了如何在 Common Voice 的德语测试数据上评估该模型:
import torchaudio.functional as F
import torch
from transformers import AutoModelForCTC, AutoProcessor
import re
from datasets import load_dataset, load_metric
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『', '』', '〝', '〟', '⟨', '⟩', '〜', ':', '!', '?', '♪', '؛', '/', '\\', 'º', '−', '^', 'ʻ', 'ˆ"]
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
counter = 0
wer_counter = 0
cer_counter = 0
def main():
model = AutoModelForCTC.from_pretrained("flozi00/wav2vec2-large-xlsr-53-german-with-lm")
processor = AutoProcessor.from_pretrained("flozi00/wav2vec2-large-xlsr-53-german-with-lm")
wer = load_metric("wer")
cer = load_metric("cer")
ds = load_dataset("common_voice", "de", split="test")
def calculate_metrics(batch):
global counter, wer_counter, cer_counter
resampled_audio = F.resample(torch.tensor(batch["audio"]["array"]), 48_000, 16_000).numpy()
input_values = processor(resampled_audio, return_tensors="pt", sampling_rate=16_000).input_values
with torch.no_grad():
logits = model(input_values).logits.numpy()[0]
decoded = processor.decode(logits)
pred = decoded.text
ref = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
wer_result = wer.compute(predictions=[pred], references=[ref])
cer_result = cer.compute(predictions=[pred], references=[ref])
counter += 1
wer_counter += wer_result
cer_counter += cer_result
print(f"WER: {(wer_counter/counter)*100} | CER: {(cer_counter/counter)*100}")
return batch
ds.map(calculate_metrics, remove_columns=ds.column_names)
main()
📚 详细文档
测试结果
模型 |
字错率(WER) |
字符错误率(CER) |
flozi00/wav2vec2-large-xlsr-53-german-with-lm |
5.7467896819046755% |
1.8980142607670552% |
评估
该模型可按上述 Python 代码在 Common Voice 的德语测试数据上进行评估。
致谢
声学模型是 jonatasgrosman 的模型 的副本,用于训练匹配的 kenlm 语言模型。
📄 许可证
本项目采用 Apache-2.0 许可证。
🔧 技术细节
暂未提供相关技术细节。