🚀 Wav2Vec2-Large-XLSR-53-马拉地语
本模型基于 facebook/wav2vec2-large-xlsr-53,使用 InterSpeech 2021 马拉地语 数据集的一部分进行微调。使用此模型时,请确保语音输入的采样率为 16kHz。
🔍 模型信息
属性 |
详情 |
模型类型 |
微调后的 Wav2Vec2-Large-XLSR-53 马拉地语模型 |
训练数据 |
InterSpeech 2021 马拉地语数据集的 5000 个示例 |
评估指标 |
词错误率(WER) |
许可证 |
Apache-2.0 |
🚀 快速开始
本模型可直接使用(无需语言模型),假设你有一个包含马拉地语 sentence
和 path
字段的数据集:
💻 使用示例
基础用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2")
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2")
resampler = torchaudio.transforms.Resample(8_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
评估
可以在 InterSpeech-2021 马拉地语数据的测试集上对模型进行评估:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2")
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-mr-2")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]'
resampler = torchaudio.transforms.Resample(8_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"),
attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果:19.98 % (使用测试集中的 555 个示例进行评估)
在 OpenSLR74 数据 10% 上的测试结果:64.64 %
训练
使用了 InterSpeech 马拉地语数据集的 5000 个示例进行训练。训练使用的 Colab 笔记本可在 此处 找到。
📄 许可证
本项目采用 Apache-2.0 许可证。