🚀 Wav2Vec2-Large-XLSR-53-葡萄牙语模型
本模型基于Common Voice数据集,在葡萄牙语上对facebook/wav2vec2-large-xlsr-53进行了微调,可用于葡萄牙语的自动语音识别任务。
属性 |
详情 |
模型类型 |
JoaoAlvarenga XLSR Wav2Vec2 Large 53 葡萄牙语模型 |
训练数据 |
Common Voice 数据集的葡萄牙语部分 |
评估指标 |
字错率(WER) |
许可证 |
Apache-2.0 |
🚀 快速开始
本模型可直接使用(无需语言模型),以下是使用示例。
💻 使用示例
基础用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "pt", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese")
model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
🔧 评估
可以使用以下代码在Common Voice的葡萄牙语测试数据上对模型进行评估。你需要安装Enelvo,这是一个基于Twitter用户帖子训练的开源拼写纠正工具。
pip install enelvo
评估代码示例
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from enelvo import normaliser
import re
test_dataset = load_dataset("common_voice", "pt", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a")
model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
norm = normaliser.Normaliser()
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = [norm.normalise(i) for i in processor.batch_decode(pred_ids)]
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果(字错率):13.766801%
🔨 训练
训练使用了Common Voice的train
和validation
数据集。训练脚本可在以下链接找到:https://github.com/joaoalvarenga/wav2vec2-large-xlsr-53-portuguese/blob/main/fine-tuning.py
📄 许可证
本模型使用Apache-2.0许可证。