🚀 瓦维2大XLSR 53迪维希语模型
本模型基于facebook/wav2vec2-large-xlsr-53,使用通用语音数据集在迪维希语上进行了微调。使用此模型时,请确保语音输入采样率为16kHz。
🚀 快速开始
本模型可直接使用(无需语言模型),具体使用方法如下。
💻 使用示例
基础用法
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "dv", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi")
model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi")
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
高级用法
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "dv", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi")
model = Wav2Vec2ForCTC.from_pretrained("shahukareem/wav2vec2-large-xlsr-53-dhivehi")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\،\.\؟\!\'\"\–\’]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
测试结果:32.85%
📚 详细文档
评估
本模型可在通用语音迪维希语测试数据上进行评估,评估代码如下。
训练
训练使用了通用语音的train
和validation
数据集。
示例预测
reference: ކަރަންޓް ވައިރުކޮށް ބޮކި ހަރުކުރުން
predicted: ކަރަންޓް ވައިރުކޮށް ބޮކި ހަރުކުރުން
--
reference: ދެން އެކުދިންނާ ދިމާއަށް އަތް ދިށްކޮށްލެވެ
predicted: ދެން އެކުދިންނާ ދިމާއަށް އަތް ދިއްކޮށްލެވެ ް
--
reference: ރަކި ހިނިތުންވުމަކާއެކު އޭނާ އަމިއްލައަށް ތައާރަފްވި
predicted: ރަކި ހިނިތުންވުމަކާއެކު އޭނާ އަމިއްލައަށް ތައަރަފްވި
--
reference: ކޮޓަރީގެ ކުޑަދޮރުން ބޭރު ބަލަހައްޓައިގެން އިން ރޫނާގެ މޫނުމަތިން ފާޅުވަމުން ދިޔައީ ކަންބޮޑުވުމުގެ އަސަރުތައް
predicted: ކޮޓަރީގެ ކުޑަދޮރުން ބޭރު ބަލަހައްޓައިގެން އިން ރނާގެ މޫނުމަތިން ފާޅުވަމުން ދިޔައީ ކަންބޮޑުވުމުގެ އަސަރުތައް
--
📄 许可证
本模型使用的许可证为Apache-2.0。
📦 模型信息
属性 |
详情 |
模型类型 |
基于Wav2Vec2-Large-XLSR-53微调的迪维希语语音识别模型 |
训练数据 |
通用语音(Common Voice)的迪维希语数据集 |
评估指标 |
词错误率(WER) |
标签 |
音频、自动语音识别、语音、xlsr微调周 |