Wav2vec2 Large Xlsr Hindi Marathi
W
Wav2vec2 Large Xlsr Hindi Marathi
由 tanmaylaud 开发
基于Facebook的wav2vec2-large-xlsr-53模型微调,支持印地语和马拉地语的自动语音识别任务
下载量 76
发布时间 : 3/2/2022
模型简介
该模型是针对印地语和马拉地语优化的自动语音识别(ASR)模型,使用OpenSLR SLR64数据集进行微调,适用于16kHz采样率的语音输入。
模型特点
多语言支持
同时支持印地语和马拉地语两种印度主要语言的语音识别
基于XLSR预训练
基于Facebook强大的wav2vec2-large-xlsr-53模型进行微调,具有优秀的跨语言表示能力
开源数据集训练
使用OpenSLR公开数据集进行训练,确保模型透明度和可复现性
模型能力
语音转文本
印地语语音识别
马拉地语语音识别
16kHz音频处理
使用案例
语音转录
会议记录
将印地语或马拉地语的会议录音转换为文字记录
词错误率约23.7%(OpenSLR测试集)
语音助手
为印地语或马拉地语用户提供语音交互功能
教育应用
语言学习工具
帮助学习者练习印地语或马拉地语发音
🚀 Wav2Vec2-Large-XLSR-53-Hindi-Marathi
本模型基于OpenSLR SLR64数据集,在印地语(Hindi)和马拉地语(Marathi)上对facebook/wav2vec2-large-xlsr-53进行了微调。使用该模型时,请确保语音输入的采样率为16kHz。
✨ 主要特性
- 多语言支持:支持印地语和马拉地语的自动语音识别。
- 微调模型:基于facebook/wav2vec2-large-xlsr-53进行微调,适应特定语言需求。
📦 安装指南
pip install git+https://github.com/huggingface/transformers.git datasets librosa torch==1.7.0 torchaudio==0.7.0 jiwer
📚 详细文档
评估数据集下载
wget https://www.openslr.org/resources/103/Marathi_test.zip -P data/marathi
unzip -P "K3[2?do9" data/marathi/Marathi_test.zip -d data/marathi/.
tar -xzf data/marathi/Marathi_test.tar.gz -C data/marathi/.
wget https://www.openslr.org/resources/103/Hindi_test.zip -P data/hindi
unzip -P "w9I2{3B*" data/hindi/Hindi_test.zip -d data/hindi/.
tar -xzf data/hindi/Hindi_test.tar.gz -C data/hindi/.
wget -O test.csv 'https://filebin.net/snrz6bt13usv8w2e/test_large.csv?t=ps3n99ho'
#如果下载失败,请将此链接粘贴到浏览器中:https://filebin.net/snrz6bt13usv8w2e/test_large.csv
模型评估代码
在OpenSLR(印地语 + 马拉地语)上的评估代码
import torchaudio
import torch
import librosa
import numpy as np
import re
test = Dataset.from_csv('test.csv')
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\”\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\�\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\।]'
# 预处理数据集
# 需要将音频文件读取为数组
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = speech_array[0].numpy()
batch["sampling_rate"] = sampling_rate
batch["target_text"] = batch["sentence"]
batch["speech"] = librosa.resample(np.asarray(batch["speech"]), sampling_rate, 16_000)
batch["sampling_rate"] = 16_000
return batch
test= test.map(speech_file_to_array_fn)
# 预处理数据集
# 需要将音频文件读取为数组
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
# 计算指标时不希望合并标记
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
test = test.map(evaluate, batched=True, batch_size=32)
print("WER: {:2f}".format(100 * wer.compute(predictions=test["pred_strings"], references=test["sentence"])))
在Common Voice印地语上的评估代码
import torchaudio
import torch
import librosa
import numpy as np
import re
from datasets import load_metric, load_dataset, Dataset
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained('tanmaylaud/wav2vec2-large-xlsr-hindi-marathi')
model = Wav2Vec2ForCTC.from_pretrained('tanmaylaud/wav2vec2-large-xlsr-hindi-marathi').to("cuda")
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\“\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\”\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\�\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\।]'
# 预处理数据集
# 需要将音频文件读取为数组
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = speech_array[0].numpy()
batch["sampling_rate"] = sampling_rate
batch["target_text"] = batch["sentence"]
batch["speech"] = librosa.resample(np.asarray(batch["speech"]), sampling_rate, 16_000)
batch["sampling_rate"] = 16_000
return batch
# 在批次上运行预测
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
# 计算指标时不希望合并标记
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
test_data = load_dataset("common_voice", "hi", split="test")
test_data = test_data.map(speech_file_to_array_fn)
test_data = test_data.map(evaluate, batched=True, batch_size=32)
print("WER: {:2f}".format(100 * wer.compute(predictions=test_data["pred_strings"],
references=test_data["sentence"])))
评估笔记本链接
字错率(WER)
- OpenSLR印地语 + 马拉地语测试集(https://filebin.net/snrz6bt13usv8w2e/test_large.csv):23.736641%
- Common Voice印地语测试分割集:44.083527%
💻 使用示例
基础用法
import torch
import torchaudio
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_metric, Dataset
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained('tanmaylaud/wav2vec2-large-xlsr-hindi-marathi')
model = Wav2Vec2ForCTC.from_pretrained('tanmaylaud/wav2vec2-large-xlsr-hindi-marathi').to("cuda")
# 预处理数据集
# 需要将音频文件读取为数组
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"])
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = speech_array[0].numpy()
batch["sampling_rate"] = sampling_rate
batch["target_text"] = batch["sentence"]
batch["speech"] = librosa.resample(np.asarray(batch["speech"]), sampling_rate, 16_000)
batch["sampling_rate"] = 16_000
return batch
test_data= test_data.map(speech_file_to_array_fn)
inputs = processor(test_data["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_data["text"][:2])
📄 许可证
本模型采用Apache-2.0许可证。
📚 详细信息表格
属性 | 详情 |
---|---|
支持语言 | 印地语、马拉地语 |
数据集 | OpenSLR、interspeech_2021_asr |
评估指标 | 字错率(WER) |
模型名称 | XLSR Wav2Vec2 Large 53 Hindi-Marathi by Tanmay Laud |
许可证 | Apache-2.0 |
Voice Activity Detection
MIT
基于pyannote.audio 2.1版本的语音活动检测模型,用于识别音频中的语音活动时间段
语音识别
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
这是一个针对葡萄牙语语音识别任务微调的XLSR-53大模型,基于Common Voice 6.1数据集训练,支持葡萄牙语语音转文本。
语音识别 其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先进自动语音识别(ASR)和语音翻译模型,在超过500万小时的标注数据上训练,具有强大的跨数据集和跨领域泛化能力。
语音识别 支持多种语言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI开发的最先进的自动语音识别(ASR)和语音翻译模型,经过超过500万小时标记数据的训练,在零样本设置下展现出强大的泛化能力。
语音识别
Transformers 支持多种语言

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的俄语语音识别模型,支持16kHz采样率的语音输入
语音识别 其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的中文语音识别模型,支持16kHz采样率的语音输入。
语音识别 中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的荷兰语语音识别模型,在Common Voice和CSS10数据集上训练,支持16kHz音频输入。
语音识别 其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的日语语音识别模型,支持16kHz采样率的语音输入
语音识别 日语
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基于Hugging Face预训练模型的文本与音频强制对齐工具,支持多种语言,内存效率高
语音识别
Transformers 支持多种语言

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的阿拉伯语语音识别模型,在Common Voice和阿拉伯语语音语料库上训练
语音识别 阿拉伯语
W
jonatasgrosman
2.3M
37
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98