Wav2vec2 Xls R 300m Korean
基于XLS-R架构的韩语自动语音识别模型,在Zeroth Korean数据集上微调
下载量 152
发布时间 : 3/2/2022
模型简介
该模型是基于XLS-R架构的自动语音识别模型,专门针对韩语进行优化,适用于语音转文本任务。
模型特点
韩语优化
专门针对韩语语音识别进行微调,在韩语数据集上表现良好。
XLS-R架构
基于先进的XLS-R架构,具有强大的语音特征提取能力。
多数据集验证
在多个韩语数据集上进行评估,包括Zeroth Korean和鲁棒语音赛事数据。
模型能力
韩语语音识别
语音转文本
自动语音识别
使用案例
语音转写
韩语语音转文本
将韩语语音内容转换为文本
在Zeroth Korean数据集上WER为29.54%,CER为9.53%
语音识别挑战
鲁棒语音赛事
参与HuggingFace组织的鲁棒语音识别挑战
在开发数据上WER为76.26%,CER为38.67%
🚀 Wav2Vec2 XLS - R 300M 韩语模型
Wav2Vec2 XLS - R 300M 韩语模型是一个基于自动语音识别技术的模型。它基于 XLS - R 架构,在 Zeroth Korean 数据集上对 Wav2Vec2 - XLS - R - 300M 模型进行了微调,能够有效处理韩语语音识别任务。
🚀 快速开始
该模型基于 HuggingFace 的 PyTorch 框架进行训练,并且是 HuggingFace 组织的 Robust Speech Challenge Event 的一部分。所有训练都在由 OVH 赞助的 Tesla V100 上完成。训练所需的所有脚本可以在 Files and versions 标签中找到,同时通过 Tensorboard 记录的 Training metrics 也可查看。
✨ 主要特性
- 基于先进的 XLS - R 架构,在韩语语音识别任务上有良好表现。
- 经过在 Zeroth Korean 数据集上的微调,更适配韩语语音场景。
- 参与了 Robust Speech Challenge Event,具备一定的鲁棒性。
📚 详细文档
模型信息
属性 | 详情 |
---|---|
模型类型 | wav2vec2 - xls - r - 300m - korean |
参数数量 | 300M |
架构 | XLS - R |
训练/验证数据(文本) | Zeroth Korean 数据集 |
评估结果
该模型在评估中取得了以下结果:
数据集 | 损失 | 字错率(WER) | 字符错误率(CER) |
---|---|---|---|
Zeroth Korean |
0.2089 | 29.54% | 9.53% |
Robust Speech Event - Dev Data |
未提供 | 76.26% | 38.67% |
训练过程
训练超参数
训练过程中使用了以下超参数:
learning_rate
:7.5e - 05train_batch_size
:8eval_batch_size
:8seed
:42gradient_accumulation_steps
:4total_train_batch_size
:32optimizer
:Adam,betas=(0.9, 0.999)
,epsilon = 1e - 08
lr_scheduler_type
:线性lr_scheduler_warmup_steps
:2000num_epochs
:50.0mixed_precision_training
:Native AMP
训练结果
训练损失 | 轮数 | 步数 | 验证损失 | 字错率(Wer) | 字符错误率(Cer) |
---|---|---|---|---|---|
19.7138 | 0.72 | 500 | 19.6427 | 1.0 | 1.0 |
4.8039 | 1.44 | 1000 | 4.7842 | 1.0 | 1.0 |
4.5619 | 2.16 | 1500 | 4.5608 | 0.9992 | 0.9598 |
4.254 | 2.88 | 2000 | 4.2729 | 0.9955 | 0.9063 |
4.1905 | 3.6 | 2500 | 4.2257 | 0.9903 | 0.8758 |
4.0683 | 4.32 | 3000 | 3.9294 | 0.9937 | 0.7911 |
3.486 | 5.04 | 3500 | 2.7045 | 1.0012 | 0.5934 |
2.946 | 5.75 | 4000 | 1.9691 | 0.9425 | 0.4634 |
2.634 | 6.47 | 4500 | 1.5212 | 0.8807 | 0.3850 |
2.4066 | 7.19 | 5000 | 1.2551 | 0.8177 | 0.3601 |
2.2651 | 7.91 | 5500 | 1.0423 | 0.7650 | 0.3039 |
2.1828 | 8.63 | 6000 | 0.9599 | 0.7273 | 0.3106 |
2.1023 | 9.35 | 6500 | 0.9482 | 0.7161 | 0.3063 |
2.0536 | 10.07 | 7000 | 0.8242 | 0.6767 | 0.2860 |
1.9803 | 10.79 | 7500 | 0.7643 | 0.6563 | 0.2637 |
1.9468 | 11.51 | 8000 | 0.7319 | 0.6441 | 0.2505 |
1.9178 | 12.23 | 8500 | 0.6937 | 0.6320 | 0.2489 |
1.8515 | 12.95 | 9000 | 0.6443 | 0.6053 | 0.2196 |
1.8083 | 13.67 | 9500 | 0.6286 | 0.6122 | 0.2148 |
1.819 | 14.39 | 10000 | 0.6015 | 0.5986 | 0.2074 |
1.7684 | 15.11 | 10500 | 0.5682 | 0.5741 | 0.1982 |
1.7195 | 15.83 | 11000 | 0.5385 | 0.5592 | 0.2007 |
1.7044 | 16.55 | 11500 | 0.5362 | 0.5524 | 0.2097 |
1.6879 | 17.27 | 12000 | 0.5119 | 0.5489 | 0.2083 |
1.656 | 17.98 | 12500 | 0.4990 | 0.5362 | 0.1968 |
1.6122 | 18.7 | 13000 | 0.4561 | 0.5092 | 0.1900 |
1.5919 | 19.42 | 13500 | 0.4778 | 0.5225 | 0.1975 |
1.5896 | 20.14 | 14000 | 0.4563 | 0.5098 | 0.1859 |
1.5589 | 20.86 | 14500 | 0.4362 | 0.4940 | 0.1725 |
1.5353 | 21.58 | 15000 | 0.4140 | 0.4826 | 0.1580 |
1.5441 | 22.3 | 15500 | 0.4031 | 0.4742 | 0.1550 |
1.5116 | 23.02 | 16000 | 0.3916 | 0.4748 | 0.1545 |
1.4731 | 23.74 | 16500 | 0.3841 | 0.4810 | 0.1542 |
1.4647 | 24.46 | 17000 | 0.3752 | 0.4524 | 0.1475 |
1.4328 | 25.18 | 17500 | 0.3587 | 0.4476 | 0.1461 |
1.4129 | 25.9 | 18000 | 0.3429 | 0.4242 | 0.1366 |
1.4062 | 26.62 | 18500 | 0.3450 | 0.4251 | 0.1355 |
1.3928 | 27.34 | 19000 | 0.3297 | 0.4145 | 0.1322 |
1.3906 | 28.06 | 19500 | 0.3210 | 0.4185 | 0.1336 |
1.358 | 28.78 | 20000 | 0.3131 | 0.3970 | 0.1275 |
1.3445 | 29.5 | 20500 | 0.3069 | 0.3920 | 0.1276 |
1.3159 | 30.22 | 21000 | 0.3035 | 0.3961 | 0.1255 |
1.3044 | 30.93 | 21500 | 0.2952 | 0.3854 | 0.1242 |
1.3034 | 31.65 | 22000 | 0.2966 | 0.3772 | 0.1227 |
1.2963 | 32.37 | 22500 | 0.2844 | 0.3706 | 0.1208 |
1.2765 | 33.09 | 23000 | 0.2841 | 0.3567 | 0.1173 |
1.2438 | 33.81 | 23500 | 0.2734 | 0.3552 | 0.1137 |
1.2487 | 34.53 | 24000 | 0.2703 | 0.3502 | 0.1118 |
1.2249 | 35.25 | 24500 | 0.2650 | 0.3484 | 0.1142 |
1.2229 | 35.97 | 25000 | 0.2584 | 0.3374 | 0.1097 |
1.2374 | 36.69 | 25500 | 0.2568 | 0.3337 | 0.1095 |
1.2153 | 37.41 | 26000 | 0.2494 | 0.3327 | 0.1071 |
1.1925 | 38.13 | 26500 | 0.2518 | 0.3366 | 0.1077 |
1.1908 | 38.85 | 27000 | 0.2437 | 0.3272 | 0.1057 |
1.1858 | 39.57 | 27500 | 0.2396 | 0.3265 | 0.1044 |
1.1808 | 40.29 | 28000 | 0.2373 | 0.3156 | 0.1028 |
1.1842 | 41.01 | 28500 | 0.2356 | 0.3152 | 0.1026 |
1.1668 | 41.73 | 29000 | 0.2319 | 0.3188 | 0.1025 |
1.1448 | 42.45 | 29500 | 0.2293 | 0.3099 | 0.0995 |
1.1327 | 43.17 | 30000 | 0.2265 | 0.3047 | 0.0979 |
1.1307 | 43.88 | 30500 | 0.2222 | 0.3078 | 0.0989 |
1.1419 | 44.6 | 31000 | 0.2215 | 0.3038 | 0.0981 |
1.1231 | 45.32 | 31500 | 0.2193 | 0.3013 | 0.0972 |
1.139 | 46.04 | 32000 | 0.2162 | 0.3007 | 0.0968 |
1.1114 | 46.76 | 32500 | 0.2122 | 0.2982 | 0.0960 |
1.111 | 47.48 | 33000 | 0.2125 | 0.2946 | 0.0948 |
1.0982 | 48.2 | 33500 | 0.2099 | 0.2957 | 0.0953 |
1.109 | 48.92 | 34000 | 0.2092 | 0.2955 | 0.0955 |
1.0905 | 49.64 | 34500 | 0.2088 | 0.2954 | 0.0953 |
免责声明
请考虑预训练数据集可能带来的偏差,这些偏差可能会影响该模型的结果。
作者
Wav2Vec2 XLS - R 300M 韩语模型由 Wilson Wongso 进行训练和评估。所有计算和开发工作均在 OVH Cloud 上完成。
框架版本
- Transformers 4.17.0.dev0
- Pytorch 1.10.2 + cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.10.3
📄 许可证
本项目采用 Apache - 2.0 许可证。
Voice Activity Detection
MIT
基于pyannote.audio 2.1版本的语音活动检测模型,用于识别音频中的语音活动时间段
语音识别
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
这是一个针对葡萄牙语语音识别任务微调的XLSR-53大模型,基于Common Voice 6.1数据集训练,支持葡萄牙语语音转文本。
语音识别 其他
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper是由OpenAI提出的先进自动语音识别(ASR)和语音翻译模型,在超过500万小时的标注数据上训练,具有强大的跨数据集和跨领域泛化能力。
语音识别 支持多种语言
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper是由OpenAI开发的最先进的自动语音识别(ASR)和语音翻译模型,经过超过500万小时标记数据的训练,在零样本设置下展现出强大的泛化能力。
语音识别
Transformers 支持多种语言

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的俄语语音识别模型,支持16kHz采样率的语音输入
语音识别 其他
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的中文语音识别模型,支持16kHz采样率的语音输入。
语音识别 中文
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的荷兰语语音识别模型,在Common Voice和CSS10数据集上训练,支持16kHz音频输入。
语音识别 其他
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53模型微调的日语语音识别模型,支持16kHz采样率的语音输入
语音识别 日语
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
基于Hugging Face预训练模型的文本与音频强制对齐工具,支持多种语言,内存效率高
语音识别
Transformers 支持多种语言

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
基于facebook/wav2vec2-large-xlsr-53微调的阿拉伯语语音识别模型,在Common Voice和阿拉伯语语音语料库上训练
语音识别 阿拉伯语
W
jonatasgrosman
2.3M
37
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98