🚀 Wav2Vec2-Large-XLSR-53-English
本项目基于Common Voice英文数据集,对facebook/wav2vec2-large-xlsr-53模型进行了微调。使用该模型时,请确保语音输入的采样率为16kHz。
此模型的微调得益于OVHcloud慷慨提供的GPU算力支持。训练脚本可在此处找到。
🚀 快速开始
本模型基于英文的Common Voice数据集,对facebook/wav2vec2-large-xlsr-53进行了微调。使用该模型时,请确保语音输入的采样率为16kHz。
✨ 主要特性
- 基于大规模预训练模型
facebook/wav2vec2-large-xlsr-53
进行微调,提升英文语音识别效果。
- 可直接使用,也可结合语言模型使用。
- 提供了详细的使用示例和评估脚本。
📦 安装指南
文档未提及安装相关内容,可参考原模型及依赖库的安装说明进行安装。
💻 使用示例
基础用法
使用HuggingSound库进行语音识别:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-english")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
高级用法
编写自己的推理脚本:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "en"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
以下是部分识别结果示例:
参考文本 |
预测文本 |
"SHE'LL BE ALL RIGHT." |
SHE'LL BE ALL RIGHT |
SIX |
SIX |
"ALL'S WELL THAT ENDS WELL." |
ALL AS WELL THAT ENDS WELL |
DO YOU MEAN IT? |
DO YOU MEAN IT |
THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE, BUT STILL CAUSES REGRESSIONS. |
THE NEW PATCH IS LESS INVASIVE THAN THE OLD ONE BUT STILL CAUSES REGRESSION |
HOW IS MOZILLA GOING TO HANDLE AMBIGUITIES LIKE QUEUE AND CUE? |
HOW IS MOSLILLAR GOING TO HANDLE ANDBEWOOTH HIS LIKE Q AND Q |
"I GUESS YOU MUST THINK I'M KINDA BATTY." |
RUSTIAN WASTIN PAN ONTE BATTLY |
NO ONE NEAR THE REMOTE MACHINE YOU COULD RING? |
NO ONE NEAR THE REMOTE MACHINE YOU COULD RING |
SAUCE FOR THE GOOSE IS SAUCE FOR THE GANDER. |
SAUCE FOR THE GUICE IS SAUCE FOR THE GONDER |
GROVES STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD. |
GRAFS STARTED WRITING SONGS WHEN SHE WAS FOUR YEARS OLD |
📚 详细文档
评估
- 在
mozilla-foundation/common_voice_6_0
数据集的test
分割上进行评估:
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset mozilla-foundation/common_voice_6_0 --config en --split test
- 在
speech-recognition-community-v2/dev_data
数据集上进行评估:
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-english --dataset speech-recognition-community-v2/dev_data --config en --split validation --chunk_length_s 5.0 --stride_length_s 1.0
📄 许可证
本项目采用apache-2.0
许可证。
📚 引用
如果您想引用此模型,可以使用以下 BibTeX 格式:
@misc{grosman2021wav2vec2-large-xlsr-53-english,
title={XLSR Wav2Vec2 English by Jonatas Grosman},
author={Grosman, Jonatas},
publisher={Hugging Face},
journal={Hugging Face Hub},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-english}},
year={2021}
}
📋 模型信息
属性 |
详情 |
模型类型 |
XLSR Wav2Vec2 English by Jonatas Grosman |
训练数据 |
Common Voice、mozilla-foundation/common_voice_6_0 |
评估指标 |
WER、CER |