🚀 gemasphi/laprador_trained
这是一个 sentence-transformers 模型,它可以将句子和段落映射到一个 768 维的密集向量空间,可用于聚类或语义搜索等任务。
🚀 快速开始
本模型可通过两种方式使用,分别是借助 sentence-transformers
库和 HuggingFace Transformers
库,下面将详细介绍。
✨ 主要特性
- 能够将句子和段落映射到 768 维的密集向量空间。
- 可用于聚类、语义搜索等任务。
📦 安装指南
若要使用 sentence-transformers
库来调用此模型,需先安装该库:
pip install -U sentence-transformers
💻 使用示例
基础用法(Sentence-Transformers)
当你安装了 sentence-transformers 库后,使用此模型会非常简单:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('gemasphi/laprador_trained')
embeddings = model.encode(sentences)
print(embeddings)
高级用法(HuggingFace Transformers)
若未安装 sentence-transformers 库,也可使用该模型。首先,将输入数据传入 Transformer 模型,然后对上下文词嵌入应用正确的池化操作:
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('gemasphi/laprador_trained')
model = AutoModel.from_pretrained('gemasphi/laprador_trained')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果
若要对该模型进行自动评估,可参考 Sentence Embeddings Benchmark:https://seb.sbert.net
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用与作者
如需了解更多信息,请参考相关引用和作者说明。