Slovakbert Skquad Mnlr
S
Slovakbert Skquad Mnlr
由 TUKE-DeutscheTelekom 开发
这是一个基于SlovakBERT的句子转换器模型,专门用于句子相似度计算和特征提取任务。
下载量 35
发布时间 : 2/17/2023
模型简介
该模型基于gerulata/slovakbert训练,用于生成句子嵌入向量,支持句子相似度计算和特征提取。
模型特点
高效的句子嵌入
能够将句子转换为768维的稠密向量表示
优化的相似度计算
使用MultipleNegativesRankingLoss训练,优化了句子相似度计算
长文本支持
支持最长300个标记的文本输入
模型能力
句子特征提取
句子相似度计算
语义搜索
使用案例
信息检索
问答系统
用于匹配问题与相关答案段落
文本分析
文档聚类
基于语义相似度对文档进行分组
🚀 句子转换器(Sentence Transformers)基于gerulata/slovakbert模型
本项目基于gerulata/slovakbert
模型构建了句子转换器(Sentence Transformers),可用于句子相似度计算和特征提取等任务,在自然语言处理领域具有广泛的应用价值。
🚀 快速开始
安装依赖库
首先,你需要安装Sentence Transformers
库:
pip install -U sentence-transformers
加载模型并进行推理
安装完成后,你可以加载模型并进行推理:
from sentence_transformers import SentenceTransformer
# 从🤗 Hub下载模型
model = SentenceTransformer("sentence_transformers_model_id")
# 进行推理
sentences = [
'Prvý most cez Zlatý roh nechal vybudovať cisár Justinián I. V roku 1502 vypísal sultán Bajazid II. súťaž na stavbu nového mosta, do ktorej sa prihlásili aj Leonardo da Vinci a Michelangelo Buonarroti, ale z realizácie návrhov nakoniec zišlo. V roku 1863 vznikol druhý, drevený most, ktorý v roku 1875 nahradil železný most, postavený francúzskymi staviteľmi. Štvrtý most postavili Nemci v roku 1912 a slúžil až do roku 1992, kedy bol zničený požiarom. Bolo rozhodnuté o stavbe mosta súčasného, ktorý vybudovala domáca firma STFA Group.',
'V ktorom roku vznikol druhý drevený most cez záliv Zlatý roh ?',
'Aká je priemerná dĺžka života v Eritrei ?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
✨ 主要特性
- 基于预训练模型:以
gerulata/slovakbert
为基础模型,充分利用了预训练模型的语言理解能力。 - 多任务支持:可用于句子相似度计算、特征提取等多种自然语言处理任务。
- 高效训练:采用
MultipleNegativesRankingLoss
损失函数,提高了训练效率和模型性能。
📦 安装指南
安装Sentence Transformers
库:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer
# 从🤗 Hub下载模型
model = SentenceTransformer("sentence_transformers_model_id")
# 进行推理
sentences = [
'Prvý most cez Zlatý roh nechal vybudovať cisár Justinián I. V roku 1502 vypísal sultán Bajazid II. súťaž na stavbu nového mosta, do ktorej sa prihlásili aj Leonardo da Vinci a Michelangelo Buonarroti, ale z realizácie návrhov nakoniec zišlo. V roku 1863 vznikol druhý, drevený most, ktorý v roku 1875 nahradil železný most, postavený francúzskymi staviteľmi. Štvrtý most postavili Nemci v roku 1912 a slúžil až do roku 1992, kedy bol zničený požiarom. Bolo rozhodnuté o stavbe mosta súčasného, ktorý vybudovala domáca firma STFA Group.',
'V ktorom roku vznikol druhý drevený most cez záliv Zlatý roh ?',
'Aká je priemerná dĺžka života v Eritrei ?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# 获取嵌入向量的相似度分数
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
📚 详细文档
模型详情
属性 | 详情 |
---|---|
模型类型 | 句子转换器(Sentence Transformer) |
基础模型 | gerulata/slovakbert |
最大序列长度 | 300 个标记 |
输出维度 | 768 个标记 |
相似度函数 | 余弦相似度 |
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 300, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
训练详情
训练数据集
- 数据集名称:未命名数据集
- 数据集大小:65,699 个训练样本
- 数据集列:
sentence_0
、sentence_1
和sentence_2
- 损失函数:
MultipleNegativesRankingLoss
,参数如下:{ "scale": 20.0, "similarity_fct": "cos_sim" }
训练超参数
非默认超参数
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1fp16
: Truemulti_dataset_batch_sampler
: round_robin
训练日志
轮次 | 步数 | 训练损失 |
---|---|---|
0.1217 | 500 | 0.7764 |
0.2435 | 1000 | 0.4429 |
0.3652 | 1500 | 0.3971 |
0.4870 | 2000 | 0.375 |
0.6087 | 2500 | 0.3427 |
0.7305 | 3000 | 0.3246 |
0.8522 | 3500 | 0.3173 |
0.9739 | 4000 | 0.3101 |
框架版本
- Python: 3.10.8
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 1.13.1
- Accelerate: 0.31.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
🔧 技术细节
本模型基于gerulata/slovakbert
预训练模型,通过Sentence Transformers
库进行微调。在训练过程中,使用了MultipleNegativesRankingLoss
损失函数,该函数可以有效地提高模型在句子相似度计算任务上的性能。同时,采用了一些非默认的超参数,如per_device_train_batch_size
、num_train_epochs
等,以优化训练效果。
📄 许可证
本项目的许可证信息未在文档中明确提及。
📖 引用
BibTeX
句子转换器(Sentence Transformers)
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
多负排名损失(MultipleNegativesRankingLoss)
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98