Sentence Transformer Ult5 Pt Small
基于ult5-pt-small的句子转换器模型,可将句子和段落映射为512维向量,适用于文本聚类、相似度计算和语义搜索等任务。
下载量 358
发布时间 : 4/13/2023
模型简介
该模型是基于ult5-pt-small的sentence-transformers类型模型,能够将文本转换为高质量的嵌入向量,适用于多种自然语言处理任务。
模型特点
高质量文本嵌入
生成的文本嵌入质量优于直接使用BERT或T5等编码器生成的嵌入。
512维向量空间
将句子和段落映射到512维的密集向量空间,便于后续处理和分析。
长文本支持
支持最长1024个token的上下文长度,适合处理较长文本。
模型能力
文本嵌入生成
句子相似度计算
文本聚类
语义搜索
释义挖掘
使用案例
文本分析
文本聚类
将相似文档或句子自动分组
提高文档组织效率
语义搜索
基于语义而非关键词匹配的搜索
提升搜索准确率
信息检索
相似问题匹配
在FAQ系统中寻找语义相似的问题
提高问答系统效率
🚀 句子相似度模型
这是一个 sentence-transformers 模型:它将句子和段落映射到一个 512 维的密集向量空间,可用于聚类或语义搜索等任务。
该模型是基于 ult5-pt-small 模型的 sentence-transformers 类型模型。它将句子和段落映射到 512 维的密集向量,可用于聚类、文本相似度计算和语义搜索。
模型 | 类型 | 词汇量 | 参数数量 | 上下文长度 |
---|---|---|---|---|
ult5-pt-small | 编码器 - 解码器 | 65k | 82.4M | 1024 |
sentence-transformer-ult5-pt-small | 句子转换器 | 65k | 51M | 1024 |
DeBERTina-base | 编码器 | 32k | 100M | 512 |
✨ 主要特性
sentence-transformers 模型生成的文本嵌入质量比直接使用 BERT 或 T5 等编码器的嵌入质量更高。
该模型的可能应用包括:
📦 安装指南
使用该模型最简单的方法是安装 sentence-transformers 库:
pip install -U sentence-transformers
💻 使用示例
基础用法
使用 sentence-transformers 库获取嵌入:
from sentence_transformers import SentenceTransformer
sentences = ["Este é um exemplo de sentença", "A sentença é convertida em um texto de dimensão 513"]
model = SentenceTransformer('tgsc/sentence-transformer-ult5-pt-small')
embeddings = model.encode(sentences)
print(embeddings)
高级用法
不使用 sentence-transformers 库,仅使用 transformers
库的使用方法:
from transformers import AutoTokenizer, T5EncoderModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["Este é um exemplo de sentença", "A sentença é convertida em um texto de dimensão 513"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('tgsc/sentence-transformer-ult5-pt-small')
model = T5EncoderModel.from_pretrained('tgsc/sentence-transformer-ult5-pt-small')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
相似度示例
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('tgsc/sentence-transformer-ult5-pt-small')
# Two lists of sentences
sentences1 = 10*['A Constituição da República é a norma máxima que regula a organização e funcionamento do Estado, garantindo os direitos fundamentais e estabelecendo os princípios e deveres que norteiam a sociedade brasileira.']
sentences2 = [
# Reescrituras da frase de referência
'Garantindo os direitos fundamentais e estabelecendo os princípios e deveres que norteiam a sociedade brasileira, a Constituição da República é a norma máxima que regula a organização e funcionamento do Estado.',
'A Constituição federal, enquanto lei suprema, determina a organização política da nação, protegendo os direitos fundamentais e estabelecendo as diretrizes e obrigações que conduzem a sociedade brasileira.',
'A Carta magna, como norma fundamental, regula a ordem jurídica e política do Estado, protegendo as garantias fundamentais e estabelecendo os princípios e responsabilidades que direcionam a sociedade brasileira.',
'A Lei maior, que disciplina a organização e o funcionamento dos poderes públicos, garante as liberdades e direitos essenciais e estabelece os valores e compromissos que orientam a sociedade brasileira.',
'A Lei fundamental do Estado, ao definir a estrutura e o funcionamento do Estado, assegura os direitos fundamentais e estabelece as normas e preceitos que orientam a sociedade brasileira.',
# Sentidos diferentes
'O contrato de prestação de serviços deve ser elaborado com clareza e objetividade, definindo as obrigações e responsabilidades de ambas as partes envolvidas.',
'A Lei Geral de Proteção de Dados (LGPD) estabelece as regras para o tratamento e proteção de informações pessoais no Brasil, visando a privacidade e segurança dos titulares.',
'O festival de música contou com a participação de diversas bandas nacionais e internacionais, atraindo um grande público ao longo de três dias de evento.',
'A feira de artesanato reuniu artesãos de diversas regiões do país, oferecendo uma variedade de produtos criativos e exclusivos para os visitantes.',
'O encontro de empreendedorismo contou com a presença de grandes líderes empresariais, que compartilharam suas experiências e estratégias para o sucesso nos negócios.',]
#Compute embedding for both lists
embeddings1 = model.encode(sentences1, convert_to_tensor=True)
embeddings2 = model.encode(sentences2, convert_to_tensor=True)
#Compute cosine-similarities
cosine_scores = util.cos_sim(embeddings1, embeddings2)
#Output the pairs with their score
# Print
print('sentença de referência\n', sentences1[0],'\n')
print('Reescrituras da frase de referência')
for i in range(len(sentences1)):
print("Score: {:.4f} {} \t\t".format(cosine_scores[i][i], sentences2[i]))
if i==4:
print('\nFrases sobre assuntos diferentes')
# sentença de referência
# A Constituição da República é a norma máxima que regula a organização e funcionamento do Estado, garantindo os direitos fundamentais e estabelecendo os princípios e deveres que norteiam a sociedade brasileira.
# Reescrituras da frase de referência
# Score: 0.9825 Garantindo os direitos fundamentais e estabelecendo os princípios e deveres que norteiam a sociedade brasileira, a Constituição da República é a norma máxima que regula a organização e funcionamento do Estado.
# Score: 0.8496 A Constituição federal, enquanto lei suprema, determina a organização política da nação, protegendo os direitos fundamentais e estabelecendo as diretrizes e obrigações que conduzem a sociedade brasileira.
# Score: 0.8192 A Carta magna, como norma fundamental, regula a ordem jurídica e política do Estado, protegendo as garantias fundamentais e estabelecendo os princípios e responsabilidades que direcionam a sociedade brasileira.
# Score: 0.8385 A Lei maior, que disciplina a organização e o funcionamento dos poderes públicos, garante as liberdades e direitos essenciais e estabelece os valores e compromissos que orientam a sociedade brasileira.
# Score: 0.8745 A Lei fundamental do Estado, ao definir a estrutura e o funcionamento do Estado, assegura os direitos fundamentais e estabelece as normas e preceitos que orientam a sociedade brasileira.
# Frases sobre assuntos diferentes
# Score: 0.4742 O contrato de prestação de serviços deve ser elaborado com clareza e objetividade, definindo as obrigações e responsabilidades de ambas as partes envolvidas.
# Score: 0.5510 A Lei Geral de Proteção de Dados (LGPD) estabelece as regras para o tratamento e proteção de informações pessoais no Brasil, visando a privacidade e segurança dos titulares.
# Score: 0.1828 O festival de música contou com a participação de diversas bandas nacionais e internacionais, atraindo um grande público ao longo de três dias de evento.
# Score: 0.1489 A feira de artesanato reuniu artesãos de diversas regiões do país, oferecendo uma variedade de produtos criativos e exclusivos para os visitantes.
# Score: 0.2284 O encontro de empreendedorismo contou com a presença de grandes líderes empresariais, que compartilharam suas experiências e estratégias para o sucesso nos negócios.
📚 详细文档
基础模型
📄 许可证
引用
@misc{ult5-pt2023,
author = {Thacio Garcia Scandaroli},
title = {ULT5-pt: Portuguese Language Model trained with UL2},
year = {2023},
}
Jina Embeddings V3
Jina Embeddings V3 是一个多语言句子嵌入模型,支持超过100种语言,专注于句子相似度和特征提取任务。
文本嵌入
Transformers 支持多种语言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基于MS Marco段落排序任务训练的交叉编码器模型,用于信息检索中的查询-段落相关性评分
文本嵌入 英语
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基于蒸馏技术的稀疏检索模型,专为OpenSearch优化,支持免推理文档编码,在搜索相关性和效率上优于V1版本
文本嵌入
Transformers 英语

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基于PubMedBERT的生物医学实体表征模型,通过自对齐预训练优化语义关系捕捉
文本嵌入 英语
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一个强大的句子转换器模型,专注于句子相似度和文本嵌入任务,在多个基准测试中表现出色。
文本嵌入 英语
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一个英文句子转换器模型,专注于句子相似度任务,在多个文本嵌入基准测试中表现优异。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一个多语言的句子嵌入模型,支持超过50种语言,适用于句子相似度计算等任务。
文本嵌入
Transformers 支持多种语言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一个化学语言模型,旨在实现完全由机器驱动的超快聚合物信息学。它将PSMILES字符串映射为600维密集指纹,以数值形式表示聚合物化学结构。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基于土耳其语BERT的句子嵌入模型,专为语义相似度任务优化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基于BAAI/bge-small-en-v1.5模型微调的文本嵌入模型,通过MEDI数据集与MTEB分类任务数据集训练,优化了检索任务的查询编码能力。
文本嵌入
Safetensors 英语
G
avsolatorio
945.68k
29
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98