🚀 flax-sentence-embeddings/st-codesearch-distilroberta-base
这是一个 sentence-transformers 模型,它可以将句子和段落映射到一个 768 维的密集向量空间,可用于聚类或语义搜索等任务。该模型在 code_search_net 数据集上进行训练,可根据文本搜索程序代码。
✨ 主要特性
- 基于 sentence-transformers 框架,可将文本映射到 768 维向量空间。
- 在 code_search_net 数据集上训练,适用于代码搜索任务。
📦 安装指南
若要使用此模型,需安装 sentence-transformers:
pip install -U sentence-transformers
💻 使用示例
基础用法
from sentence_transformers import SentenceTransformer, util
code = ["""def sort_list(x):
return sorted(x)""",
"""def count_above_threshold(elements, threshold=0):
counter = 0
for e in elements:
if e > threshold:
counter += 1
return counter""",
"""def find_min_max(elements):
min_ele = 99999
max_ele = -99999
for e in elements:
if e < min_ele:
min_ele = e
if e > max_ele:
max_ele = e
return min_ele, max_ele"""]
model = SentenceTransformer("flax-sentence-embeddings/st-codesearch-distilroberta-base")
code_emb = model.encode(code, convert_to_tensor=True)
while True:
query = input("Query: ")
query_emb = model.encode(query, convert_to_tensor=True)
hits = util.semantic_search(query_emb, code_emb)[0]
top_hit = hits[0]
print("Cossim: {:.2f}".format(top_hit['score']))
print(code[top_hit['corpus_id']])
print("\n\n")
高级用法
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('flax-sentence-embeddings/st-codesearch-distilroberta-base')
embeddings = model.encode(sentences)
print(embeddings)
🔧 技术细节
训练信息
该模型使用 DistilRoBERTa-base 模型在 codesearch 数据集上进行了 10k 个训练步骤的训练,批次大小为 256,使用 MultipleNegativesRankingLoss 损失函数。这是一个初步模型,尚未经过测试,训练也不够精细。
训练参数
DataLoader
MultiDatasetDataLoader.MultiDatasetDataLoader
,长度为 5371,参数如下:
{'batch_size': 256}
Loss
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,参数如下:
{'scale': 20, 'similarity_fct': 'dot_score'}
fit() 方法参数
{
"callback": null,
"epochs": 1,
"evaluation_steps": 0,
"evaluator": "NoneType",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "warmupconstant",
"steps_per_epoch": 10000,
"warmup_steps": 500,
"weight_decay": 0.01
}
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
(2): Normalize()
)
📚 详细文档
引用与作者