🚀 charlesdedampierre/bunka-embedding
这是一个 sentence-transformers 模型,它可以将句子和段落映射到一个 768 维的密集向量空间,可用于聚类或语义搜索等任务。
🚀 快速开始
本模型可用于句子相似度计算,能将文本转换为向量,在聚类、语义搜索等场景发挥作用。
✨ 主要特性
📦 安装指南
在 Bunkatopics 中使用
你可以按照以下步骤在 BunkaTopics 包中使用此大语言模型:
pip install bunkatopics
使用 Sentence-Transformers
如果你已经安装了 sentence-transformers,使用此模型会很简单:
pip install -U sentence-transformers
💻 使用示例
在 Bunkatopics 中使用
from bunkatopics import Bunka
import random
from datasets import load_dataset
dataset = load_dataset("rguo123/trump_tweets")['train']['content']
full_docs = random.sample(dataset, 10000)
from langchain.embeddings import HuggingFaceEmbeddings
embedding_model = HuggingFaceEmbeddings(model_name="charlesdedampierre/bunka-embedding")
bunka = Bunka(model_hf=embedding_model)
bunka.fit(full_docs)
df_topics = bunka.get_topics(n_clusters = 20)
使用 Sentence-Transformers
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('charlesdedampierre/bunka-embedding')
embeddings = model.encode(sentences)
print(embeddings)
使用 HuggingFace Transformers
from transformers import AutoTokenizer, AutoModel
import torch
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
sentences = ['This is an example sentence', 'Each sentence is converted']
tokenizer = AutoTokenizer.from_pretrained('charlesdedampierre/bunka-llms')
model = AutoModel.from_pretrained('charlesdedampierre/bunka-llms')
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 详细文档
评估结果
有关此模型的自动评估,请参阅 Sentence Embeddings Benchmark:https://seb.sbert.net
完整模型架构
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
📄 许可证
本项目采用 MIT 许可证。