🚀 中文全词掩码BERT模型
本项目提供了中文全词掩码预训练BERT模型,旨在进一步加速中文自然语言处理任务。
🚀 快速开始
请使用与 'Bert' 相关的函数来加载此模型!
✨ 主要特性
- 提供中文全词掩码预训练的BERT模型,助力中文自然语言处理。
- 本仓库基于 https://github.com/google-research/bert 开发。
📚 详细文档
- 相关研究论文:Pre-Training with Whole Word Masking for Chinese BERT,作者:Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu
- 相关项目推荐:
- 中文BERT系列: https://github.com/ymcui/Chinese-BERT-wwm
- 中文MacBERT: https://github.com/ymcui/MacBERT
- 中文ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
- 中文XLNet: https://github.com/ymcui/Chinese-XLNet
- 知识蒸馏工具包 - TextBrewer: https://github.com/airaria/TextBrewer
- 更多资源:由HFL提供的更多资源可查看:https://github.com/ymcui/HFL-Anthology
📄 许可证
本项目采用 "apache-2.0" 许可证。
📚 引用说明
如果您发现本技术报告或资源有用,请在您的论文中引用以下技术报告:
- 主要引用:https://arxiv.org/abs/2004.13922
@inproceedings{cui-etal-2020-revisiting,
title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
author = "Cui, Yiming and
Che, Wanxiang and
Liu, Ting and
Qin, Bing and
Wang, Shijin and
Hu, Guoping",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
pages = "657--668",
}
- 次要引用:https://arxiv.org/abs/1906.08101
@article{chinese-bert-wwm,
title={Pre-Training with Whole Word Masking for Chinese BERT},
author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},
journal={arXiv preprint arXiv:1906.08101},
year={2019}
}