🚀 谷歌表格问答模型(tapas_masklm_base_reset)
本模型对应于原始仓库中的 tapas_masklm_base_reset,它可用于表格问答等相关任务,能帮助我们从表格数据中获取所需信息。
🚀 快速开始
以下是使用该模型的具体步骤和示例代码:
from transformers import TapasTokenizer, TapasForMaskedLM
import pandas as pd
import torch
tokenizer = TapasTokenizer.from_pretrained("google/tapas-base-masklm")
model = TapasForMaskedLM.from_pretrained("google/tapas-base-masklm")
data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
'Age': ["56", "45", "59"],
'Number of movies': ["87", "53", "69"]
}
table = pd.DataFrame.from_dict(data)
query = "How many movies has Leonardo [MASK] Caprio played in?"
inputs = tokenizer(table=table, queries=query, padding="max_length", return_tensors="pt")
outputs = model(**inputs)
masked_index = torch.nonzero(inputs.input_ids.squeeze() == tokenizer.mask_token_id, as_tuple=False)
logits = outputs.logits[0, masked_index.item(), :]
probs = logits.softmax(dim=0)
values, predictions = probs.topk(5)
for value, pred in zip(values, predictions):
print(f"{tokenizer.decode([pred])} with confidence {value}")
💻 使用示例
基础用法
from transformers import TapasTokenizer, TapasForMaskedLM
import pandas as pd
import torch
tokenizer = TapasTokenizer.from_pretrained("google/tapas-base-masklm")
model = TapasForMaskedLM.from_pretrained("google/tapas-base-masklm")
data = {'Actors': ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"],
'Age': ["56", "45", "59"],
'Number of movies': ["87", "53", "69"]
}
table = pd.DataFrame.from_dict(data)
query = "How many movies has Leonardo [MASK] Caprio played in?"
inputs = tokenizer(table=table, queries=query, padding="max_length", return_tensors="pt")
outputs = model(**inputs)
masked_index = torch.nonzero(inputs.input_ids.squeeze() == tokenizer.mask_token_id, as_tuple=False)
logits = outputs.logits[0, masked_index.item(), :]
probs = logits.softmax(dim=0)
values, predictions = probs.topk(5)
for value, pred in zip(values, predictions):
print(f"{tokenizer.decode([pred])} with confidence {value}")