Chinese Roberta L 6 H 512
模型简介
这是一个基于RoBERTa架构的中文预训练语言模型,具有8层和512隐藏层维度,支持掩码语言建模等任务。
模型特点
多尺寸选择
提供24种不同规模的模型配置,从超小型到基础型,满足不同计算资源需求。
中文优化
专门针对中文文本进行预训练,在CLUE基准测试中表现优异。
两阶段训练
采用先短序列后长序列的两阶段训练策略,提升模型效果。
模型能力
中文文本理解
掩码语言建模
文本特征提取
使用案例
文本理解
情感分析
分析中文文本的情感倾向
在中文情感分析任务上达到93.4%准确率
新闻分类
对中文新闻文本进行分类
在CLUE新闻分类任务上达到65.1%准确率
语言推理
自然语言推理
判断句子间的逻辑关系
在CLUE自然语言推理任务上达到69.7%准确率
🚀 中文RoBERTa轻量级模型
本项目提供了24个中文RoBERTa预训练模型,这些模型能有效处理中文语言任务,为相关研究和应用提供了强大的支持。
🚀 快速开始
你可以直接使用此模型进行掩码语言建模任务(以RoBERTa-Medium为例):
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512')
>>> unmasker("中国的首都是[MASK]京。")
[
{'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]',
'score': 0.8701988458633423,
'token': 1266,
'token_str': '北'},
{'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]',
'score': 0.1194809079170227,
'token': 1298,
'token_str': '南'},
{'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]',
'score': 0.0037803512532263994,
'token': 691,
'token_str': '东'},
{'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]',
'score': 0.0017127094324678183,
'token': 3249,
'token_str': '普'},
{'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]',
'score': 0.001687526935711503,
'token': 3307,
'token_str': '望'}
]
以下是在PyTorch中使用该模型获取给定文本特征的方法:
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512')
model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
在TensorFlow中的使用方法如下:
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512')
model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
✨ 主要特性
- 本系列包含24个中文RoBERTa模型,由UER-py进行预训练,相关介绍见此论文。同时,这些模型也可通过TencentPretrain进行预训练,该工具相关介绍见此论文,它继承了UER-py并支持参数超过十亿的模型,还将其扩展为多模态预训练框架。
- Turc等人表明标准的BERT方法在多种模型规模上都很有效。我们遵循他们的研究,发布了这24个中文RoBERTa模型。为方便用户复现结果,我们使用了公开可用的语料库并提供了所有训练细节。
💻 使用示例
基础用法
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='uer/chinese_roberta_L-8_H-512')
>>> unmasker("中国的首都是[MASK]京。")
[
{'sequence': '[CLS] 中 国 的 首 都 是 北 京 。 [SEP]',
'score': 0.8701988458633423,
'token': 1266,
'token_str': '北'},
{'sequence': '[CLS] 中 国 的 首 都 是 南 京 。 [SEP]',
'score': 0.1194809079170227,
'token': 1298,
'token_str': '南'},
{'sequence': '[CLS] 中 国 的 首 都 是 东 京 。 [SEP]',
'score': 0.0037803512532263994,
'token': 691,
'token_str': '东'},
{'sequence': '[CLS] 中 国 的 首 都 是 普 京 。 [SEP]',
'score': 0.0017127094324678183,
'token': 3249,
'token_str': '普'},
{'sequence': '[CLS] 中 国 的 首 都 是 望 京 。 [SEP]',
'score': 0.001687526935711503,
'token': 3307,
'token_str': '望'}
]
高级用法
在不同深度学习框架中获取给定文本的特征:
PyTorch
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512')
model = BertModel.from_pretrained("uer/chinese_roberta_L-8_H-512")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
TensorFlow
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('uer/chinese_roberta_L-8_H-512')
model = TFBertModel.from_pretrained("uer/chinese_roberta_L-8_H-512")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
📚 详细文档
模型下载
你可以从UER-py模型库页面下载这24个中文RoBERTa轻量级模型,也可以通过HuggingFace从以下链接下载:
H=128 | H=256 | H=512 | H=768 | |
---|---|---|---|---|
L=2 | 2/128 (Tiny) | 2/256 | 2/512 | 2/768 |
L=4 | 4/128 | 4/256 (Mini) | 4/512 (Small) | 4/768 |
L=6 | 6/128 | 6/256 | 6/512 | 6/768 |
L=8 | 8/128 | 8/256 | 8/512 (Medium) | 8/768 |
L=10 | 10/128 | 10/256 | 10/512 | 10/768 |
L=12 | 12/128 | 12/256 | 12/512 | 12/768 (Base) |
模型表现
以下是这些模型在六个中文任务开发集上的得分:
模型 | 得分 | 书籍评论 | 中文情感语料库 | 中文自然语言推理 | 新闻分类(CLUE) | 长文本分类(CLUE) | 自然语言推理(CLUE) |
---|---|---|---|---|---|---|---|
RoBERTa-Tiny | 72.3 | 83.4 | 91.4 | 81.8 | 62.0 | 55.0 | 60.3 |
RoBERTa-Mini | 75.9 | 85.7 | 93.7 | 86.1 | 63.9 | 58.3 | 67.4 |
RoBERTa-Small | 76.9 | 87.5 | 93.4 | 86.5 | 65.1 | 59.4 | 69.7 |
RoBERTa-Medium | 78.0 | 88.7 | 94.8 | 88.1 | 65.6 | 59.5 | 71.2 |
RoBERTa-Base | 79.7 | 90.1 | 95.2 | 89.2 | 67.0 | 60.9 | 75.5 |
超参数选择
对于每个任务,我们从以下列表中选择最佳的微调超参数,并以序列长度128进行训练:
- 训练轮数:3、5、8
- 批次大小:32、64
- 学习率:3e - 5、1e - 4、3e - 4
🔧 技术细节
训练数据
使用CLUECorpusSmall作为训练数据。我们发现,尽管CLUECorpus2020比CLUECorpusSmall大得多,但在CLUECorpusSmall上预训练的模型表现优于在CLUECorpus2020上预训练的模型。
训练过程
模型通过UER-py在腾讯云上进行预训练。我们先以序列长度128进行1,000,000步的预训练,然后以序列长度512再进行250,000步的预训练。不同模型规模使用相同的超参数。
以RoBERTa-Medium为例:
阶段1
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpussmall_seq128_dataset.pt \
--processes_num 32 --seq_length 128 \
--dynamic_masking --data_processor mlm
python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--config_path models/bert/medium_config.json \
--output_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
--learning_rate 1e-4 --batch_size 64 \
--data_processor mlm --target mlm
阶段2
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpussmall_seq512_dataset.pt \
--processes_num 32 --seq_length 512 \
--dynamic_masking --data_processor mlm
python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--pretrained_model_path models/cluecorpussmall_roberta_medium_seq128_model.bin-1000000 \
--config_path models/bert/medium_config.json \
--output_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
--learning_rate 5e-5 --batch_size 16 \
--data_processor mlm --target mlm
最后,我们将预训练模型转换为Huggingface格式:
python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_roberta_medium_seq512_model.bin-250000 \
--output_model_path pytorch_model.bin \
--layers_num 8 --type mlm
BibTeX引用信息
@article{devlin2018bert,
title={Bert: Pre-training of deep bidirectional transformers for language understanding},
author={Devlin, Jacob and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
journal={arXiv preprint arXiv:1810.04805},
year={2018}
}
@article{liu2019roberta,
title={Roberta: A robustly optimized bert pretraining approach},
author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin},
journal={arXiv preprint arXiv:1907.11692},
year={2019}
}
@article{turc2019,
title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models},
author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina},
journal={arXiv preprint arXiv:1908.08962v2 },
year={2019}
}
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}
@article{zhao2023tencentpretrain,
title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
journal={ACL 2023},
pages={217},
year={2023}
}
Phi 2 GGUF
其他
Phi-2是微软开发的一个小型但强大的语言模型,具有27亿参数,专注于高效推理和高质量文本生成。
大型语言模型 支持多种语言
P
TheBloke
41.5M
205
Roberta Large
MIT
基于掩码语言建模目标预训练的大型英语语言模型,采用改进的BERT训练方法
大型语言模型 英语
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基础模型的蒸馏版本,在保持相近性能的同时更轻量高效,适用于序列分类、标记分类等自然语言处理任务。
大型语言模型 英语
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一个多语言大语言模型,针对多语言对话用例进行了优化,在常见的行业基准测试中表现优异。
大型语言模型 英语
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基于100种语言的2.5TB过滤CommonCrawl数据预训练的多语言模型,采用掩码语言建模目标进行训练。
大型语言模型 支持多种语言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基于Transformer架构的英语预训练模型,通过掩码语言建模目标在海量文本上训练,支持文本特征提取和下游任务微调
大型语言模型 英语
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI发布的开放预训练Transformer语言模型套件,参数量从1.25亿到1750亿,旨在对标GPT-3系列性能,同时促进大规模语言模型的开放研究。
大型语言模型 英语
O
facebook
6.3M
198
1
基于transformers库的预训练模型,适用于多种NLP任务
大型语言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多语言大语言模型系列,包含8B、70B和405B参数规模,支持8种语言和代码生成,优化了多语言对话场景。
大型语言模型
Transformers 支持多种语言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基础版是由Google开发的文本到文本转换Transformer模型,参数规模2.2亿,支持多语言NLP任务。
大型语言模型 支持多种语言
T
google-t5
5.4M
702
精选推荐AI模型
Llama 3 Typhoon V1.5x 8b Instruct
专为泰语设计的80亿参数指令模型,性能媲美GPT-3.5-turbo,优化了应用场景、检索增强生成、受限生成和推理任务
大型语言模型
Transformers 支持多种语言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一个基于SODA数据集训练的超小型对话模型,专为边缘设备推理设计,体积仅为Cosmo-3B模型的2%左右。
对话系统
Transformers 英语

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基于RoBERTa架构的中文抽取式问答模型,适用于从给定文本中提取答案的任务。
问答系统 中文
R
uer
2,694
98