🚀 Compare2Score模型
Compare2Score模型可用於圖像質量評估,通過特定的算法為圖像給出質量評分,為圖像質量的量化提供了有效的解決方案。
🚀 快速開始
使用AutoModel快速啟動
可以使用transformers
庫中的AutoModel
來快速啟動模型。以下是一個示例代碼,展示瞭如何使用AutoModelForCausalLM
加載模型並對圖像進行評分:
import requests
import torch
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("q-future/Compare2Score", trust_remote_code=True, attn_implementation="eager",
torch_dtype=torch.float16, device_map="auto")
from PIL import Image
image_path_url = "https://raw.githubusercontent.com/Q-Future/Q-Align/main/fig/singapore_flyer.jpg"
print("The quality score of this image is {}".format(model.score(image_path_url)))
在GitHub上進行評估
如果你想在本地對模型進行評估,可以按照以下步驟操作:
git clone https://github.com/Q-Future/Compare2Score.git
cd Compare2Score
pip install -e .
安裝完成後,你可以使用以下代碼對圖像進行評分:
from q_align import Compare2Scorer
from PIL import Image
scorer = Compare2Scorer()
image_path = "figs/i04_03_4.bmp"
print("The quality score of this image is {}.".format(scorer(image_path)))
📚 引用
如果你使用了該模型,請引用以下論文:
@article{zhu2024adaptive,
title={Adaptive Image Quality Assessment via Teaching Large Multimodal Model to Compare},
author={Zhu, Hanwei and Wu, Haoning and Li, Yixuan and Zhang, Zicheng and Chen, Baoliang and Zhu, Lingyu and Fang, Yuming and Zhai, Guangtao and Lin, Weisi and Wang, Shiqi},
journal={arXiv preprint arXiv:2405.19298},
year={2024},
}
📄 許可證
本項目採用MIT許可證。