Llm4decompile 6.7b V2
模型概述
LLM4Decompile 旨在將 x86 彙編指令反編譯為 C 代碼,新發布的 V2 系列使用了更大的數據集(2B 標記)進行訓練,最大標記長度達到 4096,與之前的模型相比,性能有顯著提升(最高可達 100%)。
模型特點
強大的反編譯能力
LLM4Decompile 致力於將 x86 彙編指令反編譯為 C 代碼,新發布的 V2 系列在性能上有顯著提升。
大規模數據集訓練
V2 系列使用 2B 標記的更大數據集進行訓練,最大標記長度達到 4096。
高性能優化
與之前的模型相比,性能有顯著提升(最高可達 100%)。
模型能力
反編譯 x86 彙編指令
生成優化的 C 代碼
處理長序列(最大標記長度 4096)
使用案例
逆向工程
二進制文件反編譯
將編譯後的二進制文件反編譯為可讀的 C 代碼,便於分析和修改。
可重新執行率顯著高於傳統工具如 Ghidra。
安全分析
漏洞分析
通過反編譯二進制文件,分析潛在的安全漏洞。
提供更清晰的代碼結構,便於識別漏洞。
🚀 LLM4Decompile
LLM4Decompile 旨在將 x86 彙編指令反編譯為 C 代碼。新發布的 V2 系列使用了更大的數據集(2B 標記)進行訓練,最大標記長度達到 4096,與之前的模型相比,性能有顯著提升(最高可達 100%)。
🚀 快速開始
模型使用示例(僅適用於 V2 版本,舊版本請查看 Hugging Face 上對應的模型頁面)
cd LLM4Decompile/ghidra
wget https://github.com/NationalSecurityAgency/ghidra/releases/download/Ghidra_11.0.3_build/ghidra_11.0.3_PUBLIC_20240410.zip
unzip ghidra_11.0.3_PUBLIC_20240410.zip
- 安裝 Java-SDK-17 Ghidra 11 依賴於 Java-SDK-17,在 Ubuntu 上安裝 SDK 的簡單方法如下:
apt-get update
apt-get upgrade
apt install openjdk-17-jdk openjdk-17-jre
其他平臺請查看 Ghidra 安裝指南。
- 使用 Ghidra Headless 反編譯二進制文件(demo.py)
注意:將 func0 替換為你要反編譯的函數名。
預處理:將 C 代碼編譯為二進制文件,並將二進制文件反彙編為彙編指令。
import os
import subprocess
from tqdm import tqdm,trange
OPT = ["O0", "O1", "O2", "O3"]
timeout_duration = 10
ghidra_path = "./ghidra_11.0.3_PUBLIC/support/analyzeHeadless"#path to the headless analyzer, change the path accordingly
postscript = "./decompile.py"#path to the decompiler helper function, change the path accordingly
project_path = "."#path to temp folder for analysis, change the path accordingly
project_name = "tmp_ghidra_proj"
func_path = "../samples/sample.c"#path to c code for compiling and decompiling, change the path accordingly
fileName = "sample"
with tempfile.TemporaryDirectory() as temp_dir:
pid = os.getpid()
asm_all = {}
for opt in [OPT[0]]:
executable_path = os.path.join(temp_dir, f"{pid}_{opt}.o")
cmd = f'gcc -{opt} -o {executable_path} {func_path} -lm'
subprocess.run(
cmd.split(' '),
check=True,
stdout=subprocess.DEVNULL, # Suppress stdout
stderr=subprocess.DEVNULL, # Suppress stderr
timeout=timeout_duration,
)
output_path = os.path.join(temp_dir, f"{pid}_{opt}.c")
command = [
ghidra_path,
temp_dir,
project_name,
"-import", executable_path,
"-postScript", postscript, output_path,
"-deleteProject", # WARNING: This will delete the project after analysis
]
result = subprocess.run(command, text=True, capture_output=True, check=True)
with open(output_path,'r') as f:
c_decompile = f.read()
c_func = []
flag = 0
for line in c_decompile.split('\n'):
if "Function: func0" in line:#**Replace** func0 with the function name you want to decompile.
flag = 1
c_func.append(line)
continue
if flag:
if '// Function:' in line:
if len(c_func) > 1:
break
c_func.append(line)
if flag == 0:
raise ValueError('bad case no function found')
for idx_tmp in range(1,len(c_func)):##########remove the comments
if 'func0' in c_func[idx_tmp]:
break
c_func = c_func[idx_tmp:]
input_asm = '\n'.join(c_func).strip()
before = f"# This is the assembly code:\n"#prompt
after = "\n# What is the source code?\n"#prompt
input_asm_prompt = before+input_asm.strip()+after
with open(fileName +'_' + opt +'.pseudo','w',encoding='utf-8') as f:
f.write(input_asm_prompt)
Ghidra 偽代碼示例如下:
undefined4 func0(float param_1,long param_2,int param_3)
{
int local_28;
int local_24;
local_24 = 0;
do {
local_28 = local_24;
if (param_3 <= local_24) {
return 0;
}
while (local_28 = local_28 + 1, local_28 < param_3) {
if ((double)((ulong)(double)(*(float *)(param_2 + (long)local_24 * 4) -
*(float *)(param_2 + (long)local_28 * 4)) &
SUB168(_DAT_00402010,0)) < (double)param_1) {
return 1;
}
}
local_24 = local_24 + 1;
} while( true );
}
- 使用 LLM4Decompile 優化偽代碼(demo.py)
反編譯:使用 LLM4Decompile-Ref 將 Ghidra 偽代碼優化為 C 代碼:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_path = 'LLM4Binary/llm4decompile-6.7b-v2' # V2 Model
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.bfloat16).cuda()
with open(fileName +'_' + OPT[0] +'.pseudo','r') as f:#optimization level O0
asm_func = f.read()
inputs = tokenizer(asm_func, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=2048)### max length to 4096, max new tokens should be below the range
c_func_decompile = tokenizer.decode(outputs[0][len(inputs[0]):-1])
with open(fileName +'_' + OPT[0] +'.pseudo','r') as f:#original file
func = f.read()
print(f'pseudo function:\n{func}')# Note we only decompile one function, where the original file may contain multiple functions
print(f'refined function:\n{c_func_decompile}')
✨ 主要特性
- 強大的反編譯能力:LLM4Decompile 致力於將 x86 彙編指令反編譯為 C 代碼,新發布的 V2 系列在性能上有顯著提升。
- 大規模數據集訓練:V2 系列使用 2B 標記的更大數據集進行訓練,最大標記長度達到 4096。
📚 詳細文檔
評估結果
指標 | 可重新執行率 | 編輯相似度 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
優化級別 | O0 | O1 | O2 | O3 | 平均 | O0 | O1 | O2 | O3 | 平均 |
LLM4Decompile-End-6.7B | 0.6805 | 0.3951 | 0.3671 | 0.3720 | 0.4537 | 0.1557 | 0.1292 | 0.1293 | 0.1269 | 0.1353 |
Ghidra | 0.3476 | 0.1646 | 0.1524 | 0.1402 | 0.2012 | 0.0699 | 0.0613 | 0.0619 | 0.0547 | 0.0620 |
+GPT-4o | 0.4695 | 0.3415 | 0.2866 | 0.3110 | 0.3522 | 0.0660 | 0.0563 | 0.0567 | 0.0499 | 0.0572 |
+LLM4Decompile-Ref-1.3B | 0.6890 | 0.3720 | 0.4085 | 0.3720 | 0.4604 | 0.1517 | 0.1325 | 0.1292 | 0.1267 | 0.1350 |
+LLM4Decompile-Ref-6.7B | 0.7439 | 0.4695 | 0.4756 | 0.4207 | 0.5274 | 0.1559 | 0.1353 | 0.1342 | 0.1273 | 0.1382 |
+LLM4Decompile-Ref-33B | 0.7073 | 0.4756 | 0.4390 | 0.4146 | 0.5091 | 0.1540 | 0.1379 | 0.1363 | 0.1307 | 0.1397 |
項目鏈接
- Github 倉庫:LLM4Decompile
📄 許可證
本代碼倉庫採用 MIT 許可證。
💬 聯繫我們
如果您有任何問題,請提交一個 issue。
Phi 2 GGUF
其他
Phi-2是微軟開發的一個小型但強大的語言模型,具有27億參數,專注於高效推理和高質量文本生成。
大型語言模型 支持多種語言
P
TheBloke
41.5M
205
Roberta Large
MIT
基於掩碼語言建模目標預訓練的大型英語語言模型,採用改進的BERT訓練方法
大型語言模型 英語
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基礎模型的蒸餾版本,在保持相近性能的同時更輕量高效,適用於序列分類、標記分類等自然語言處理任務。
大型語言模型 英語
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一個多語言大語言模型,針對多語言對話用例進行了優化,在常見的行業基準測試中表現優異。
大型語言模型 英語
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基於100種語言的2.5TB過濾CommonCrawl數據預訓練的多語言模型,採用掩碼語言建模目標進行訓練。
大型語言模型 支持多種語言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基於Transformer架構的英語預訓練模型,通過掩碼語言建模目標在海量文本上訓練,支持文本特徵提取和下游任務微調
大型語言模型 英語
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI發佈的開放預訓練Transformer語言模型套件,參數量從1.25億到1750億,旨在對標GPT-3系列性能,同時促進大規模語言模型的開放研究。
大型語言模型 英語
O
facebook
6.3M
198
1
基於transformers庫的預訓練模型,適用於多種NLP任務
大型語言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多語言大語言模型系列,包含8B、70B和405B參數規模,支持8種語言和代碼生成,優化了多語言對話場景。
大型語言模型
Transformers 支持多種語言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基礎版是由Google開發的文本到文本轉換Transformer模型,參數規模2.2億,支持多語言NLP任務。
大型語言模型 支持多種語言
T
google-t5
5.4M
702
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98