Turemb 512
這是一個基於sentence-transformers的模型,能將句子和段落映射到512維的密集向量空間,適用於聚類或語義搜索等任務。
下載量 16
發布時間 : 11/16/2023
模型概述
該模型專門用於句子和段落的向量化表示,生成512維的密集向量,可用於文本相似度計算、語義搜索和聚類分析等自然語言處理任務。
模型特點
高維向量表示
生成512維的密集向量,能夠捕捉豐富的語義信息
句子級語義理解
專門針對句子和段落級別的文本進行優化,能夠準確理解語義
高效特徵提取
能夠快速將文本轉換為向量表示,便於後續處理和分析
模型能力
句子向量化
語義相似度計算
文本聚類
語義搜索
使用案例
信息檢索
語義搜索引擎
構建基於語義而非關鍵詞的搜索引擎
提高搜索結果的相關性和準確性
文本分析
文檔聚類
將相似內容的文檔自動分組
實現文檔的自動分類和組織
推薦系統
相關內容推薦
根據用戶當前閱讀內容推薦語義相似的其他內容
提高用戶粘性和內容發現效率
🚀 turemb_512
這是一個 sentence-transformers 模型,它可以將句子和段落映射到一個 512 維的密集向量空間,可用於聚類或語義搜索等任務。
🚀 快速開始
本模型有兩種使用方式,分別是使用 sentence-transformers
庫和使用 HuggingFace Transformers
庫,下面將分別介紹。
📦 安裝指南
若要使用 sentence-transformers
庫,你需要先安裝它:
pip install -U sentence-transformers
💻 使用示例
基礎用法(Sentence-Transformers)
安裝好 sentence-transformers
後,你可以按照以下方式使用模型:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('{MODEL_NAME}')
embeddings = model.encode(sentences)
print(embeddings)
高級用法(HuggingFace Transformers)
若不使用 sentence-transformers,你可以按如下方式使用模型:首先,將輸入數據傳入 Transformer 模型,然後對上下文詞嵌入應用正確的池化操作。
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained('{MODEL_NAME}')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
📚 詳細文檔
評估結果
若要對該模型進行自動評估,請參考 Sentence Embeddings Benchmark:https://seb.sbert.net
訓練參數
該模型的訓練參數如下:
數據加載器
使用 torch.utils.data.dataloader.DataLoader
,長度為 14435,參數如下:
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
損失函數
使用 sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
,參數如下:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
fit() 方法的參數
{
"epochs": 12,
"evaluation_steps": 1000,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
"optimizer_params": {
"lr": 0.0001
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 866,
"weight_decay": 0.005
}
完整模型架構
SentenceTransformer(
(0): Transformer({'max_seq_length': None, 'do_lower_case': False}) with Transformer model: T5EncoderModel
(1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
引用與作者
@article{,
title={Translation Aligned Sentence Embeddings for Turkish Language},
author={Unlu, Eren and Ciftci, Unver},
journal={arXiv preprint arXiv:2311.09748},
year={2023}
}
@article{chung2022scaling,
title={Scaling instruction-finetuned language models},
author={Chung, Hyung Won and Hou, Le and Longpre, Shayne and Zoph, Barret and Tay, Yi and Fedus, William and Li, Yunxuan and Wang, Xuezhi and Dehghani, Mostafa and Brahma, Siddhartha and others},
journal={arXiv preprint arXiv:2210.11416},
year={2022}
}
@article{budur2020data,
title={Data and representation for turkish natural language inference},
author={Budur, Emrah and {\"O}z{\c{c}}elik, R{\i}za and G{\"u}ng{\"o}r, Tunga and Potts, Christopher},
journal={arXiv preprint arXiv:2004.14963},
year={2020}
}
@article{tiedemann2020tatoeba,
title={The Tatoeba Translation Challenge--Realistic Data Sets for Low Resource and Multilingual MT},
author={Tiedemann, J{\"o}rg},
journal={arXiv preprint arXiv:2010.06354},
year={2020}
}
@article{unal2016tasviret,
title={Tasviret: G{\"o}r{\"u}nt{\"u}lerden otomatik t{\"u}rk{\c{c}}e a{\c{c}}{\i}klama olusturma I{\c{c}}in bir denekta{\c{c}}{\i} veri k{\"u}mesi (TasvirEt: A benchmark dataset for automatic Turkish description generation from images)},
author={Unal, Mesut Erhan and Citamak, Begum and Yagcioglu, Semih and Erdem, Aykut and Erdem, Erkut and Cinbis, Nazli Ikizler and Cakici, Ruket},
journal={IEEE Sinyal Isleme ve Iletisim Uygulamalar{\i} Kurultay{\i} (SIU 2016)},
year={2016}
}
Jina Embeddings V3
Jina Embeddings V3 是一個多語言句子嵌入模型,支持超過100種語言,專注於句子相似度和特徵提取任務。
文本嵌入
Transformers 支持多種語言

J
jinaai
3.7M
911
Ms Marco MiniLM L6 V2
Apache-2.0
基於MS Marco段落排序任務訓練的交叉編碼器模型,用於信息檢索中的查詢-段落相關性評分
文本嵌入 英語
M
cross-encoder
2.5M
86
Opensearch Neural Sparse Encoding Doc V2 Distill
Apache-2.0
基於蒸餾技術的稀疏檢索模型,專為OpenSearch優化,支持免推理文檔編碼,在搜索相關性和效率上優於V1版本
文本嵌入
Transformers 英語

O
opensearch-project
1.8M
7
Sapbert From PubMedBERT Fulltext
Apache-2.0
基於PubMedBERT的生物醫學實體表徵模型,通過自對齊預訓練優化語義關係捕捉
文本嵌入 英語
S
cambridgeltl
1.7M
49
Gte Large
MIT
GTE-Large 是一個強大的句子轉換器模型,專注於句子相似度和文本嵌入任務,在多個基準測試中表現出色。
文本嵌入 英語
G
thenlper
1.5M
278
Gte Base En V1.5
Apache-2.0
GTE-base-en-v1.5 是一個英文句子轉換器模型,專注於句子相似度任務,在多個文本嵌入基準測試中表現優異。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.5M
63
Gte Multilingual Base
Apache-2.0
GTE Multilingual Base 是一個多語言的句子嵌入模型,支持超過50種語言,適用於句子相似度計算等任務。
文本嵌入
Transformers 支持多種語言

G
Alibaba-NLP
1.2M
246
Polybert
polyBERT是一個化學語言模型,旨在實現完全由機器驅動的超快聚合物信息學。它將PSMILES字符串映射為600維密集指紋,以數值形式表示聚合物化學結構。
文本嵌入
Transformers

P
kuelumbus
1.0M
5
Bert Base Turkish Cased Mean Nli Stsb Tr
Apache-2.0
基於土耳其語BERT的句子嵌入模型,專為語義相似度任務優化
文本嵌入
Transformers 其他

B
emrecan
1.0M
40
GIST Small Embedding V0
MIT
基於BAAI/bge-small-en-v1.5模型微調的文本嵌入模型,通過MEDI數據集與MTEB分類任務數據集訓練,優化了檢索任務的查詢編碼能力。
文本嵌入
Safetensors 英語
G
avsolatorio
945.68k
29
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98