Gte Qwen2 7B Instruct 4bit DWQ
G
Gte Qwen2 7B Instruct 4bit DWQ
由mlx-community開發
阿里巴巴NLP開發的基於Qwen2架構的7B參數規模指令微調模型,專注於文本生成和句子相似度任務。
下載量 100
發布時間 : 5/7/2025
模型概述
該模型是基於Qwen2架構的7B參數規模大語言模型,經過指令微調優化,適用於多種自然語言處理任務,特別是文本生成和句子相似度計算。
模型特點
多任務處理能力
支持文本生成、分類、聚類、檢索等多種自然語言處理任務
高性能表現
在多個標準數據集上展現出優秀的性能指標
指令微調優化
經過專門的指令微調,更適合實際應用場景
MLX庫支持
兼容MLX庫,便於部署和使用
模型能力
文本生成
句子相似度計算
文本分類
文本聚類
信息檢索
語義文本相似度分析
問答系統
重排序
使用案例
電子商務
商品評論分類
對亞馬遜商品評論進行情感極性分類
在MTEB亞馬遜極性分類任務中達到97.5%的準確率
反事實評論檢測
識別亞馬遜平臺上的反事實評論
在MTEB亞馬遜反事實分類任務中達到91.3%的準確率
金融
銀行客服問題分類
對銀行客戶服務問題進行自動分類
在MTEB Banking77分類任務中達到87.6%的準確率
學術研究
論文聚類
對arXiv和biorxiv論文進行主題聚類
在MTEB論文聚類任務中V度量達到51.7-56.5%
🚀 mlx-community/gte-Qwen2-7B-instruct-4bit-DWQ
本模型 mlx-community/gte-Qwen2-7B-instruct-4bit-DWQ 是使用 mlx-lm 版本 0.24.0 從 Alibaba-NLP/gte-Qwen2-7B-instruct 轉換為 MLX 格式的。
🚀 快速開始
使用 mlx
pip install mlx-lm
💻 使用示例
基礎用法
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/gte-Qwen2-7B-instruct-4bit-DWQ")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
📄 許可證
本項目採用 apache-2.0
許可證。
模型信息
屬性 | 詳情 |
---|---|
模型類型 | 文本生成 |
基礎模型 | Alibaba-NLP/gte-Qwen2-7B-instruct |
庫名稱 | mlx |
許可證 | apache-2.0 |
任務標籤 | 文本生成 |
相關標籤 | mteb、sentence-transformers、transformers、Qwen2、sentence-similarity、mlx |
模型評估結果
該模型在多個數據集上進行了評估,涵蓋分類、檢索、聚類、重排序和語義文本相似度等多種任務,以下是部分關鍵評估指標:
分類任務
數據集 | 準確率 | F1值 |
---|---|---|
MTEB AmazonReviewsClassification (en) | 62.564 | 60.975777935041066 |
MTEB AmazonPolarityClassification | 97.497825 | 97.49769793778039 |
MTEB EmotionClassification | 79.455 | 74.16798697647569 |
MTEB ImdbClassification | 96.75399999999999 | 96.75348377433475 |
MTEB MTOPDomainClassification (en) | 99.03784769721841 | 98.97791641821495 |
MTEB MTOPIntentClassification (en) | 91.88326493388054 | 73.74809928034335 |
MTEB MassiveIntentClassification (en) | 85.41358439811701 | 83.503679460639 |
MTEB MassiveScenarioClassification (en) | 89.77135171486215 | 88.89843747468366 |
MTEB ToxicConversationsClassification | 85.1174 | 69.79254701873245 |
MTEB TweetSentimentExtractionClassification | 72.58347481607245 | 72.74877295564937 |
MTEB AmazonReviewsClassification (zh) | 53.98400000000001 | 51.21447361350723 |
MTEB IFlyTek | 54.52096960369373 | 40.930845295808695 |
MTEB JDReview | 86.51031894934334 | 81.54813679326381 |
MTEB MassiveIntentClassification (zh-CN) | 81.08607935440484 | 78.24879986066307 |
MTEB MassiveScenarioClassification (zh-CN) | 86.05917955615332 | 85.05279279434997 |
MTEB MultilingualSentiment | 76.87666666666667 | 76.7317686219665 |
MTEB OnlineShopping | 94.3 | 94.29311102997727 |
MTEB TNews | 52.971999999999994 | 50.2898280984929 |
MTEB Waimai | 89.47 | 87.95207751382563 |
MTEB AmazonReviewsClassification (fr) | 55.532000000000004 | 52.5783943471605 |
MTEB MTOPDomainClassification (fr) | 96.68963357344191 | 96.45175170820961 |
MTEB MTOPIntentClassification (fr) | 87.46946445349202 | 65.79860440988624 |
MTEB MasakhaNEWSClassification (fra) | 82.60663507109005 | 77.20462646604777 |
MTEB MassiveIntentClassification (fr) | 81.65097511768661 | 78.77796091490924 |
MTEB MassiveScenarioClassification (fr) | 86.64425016812373 | 85.4912728670017 |
MTEB AllegroReviews | 67.13717693836979 | 57.27609848003782 |
MTEB CBD | 78.03000000000002 | 66.54857118886073 |
MTEB MassiveIntentClassification (pl) | 80.75319435104238 | 77.58961444860606 |
MTEB MassiveScenarioClassification (pl) | 85.54472091459313 | 84.29498563572106 |
MTEB PAC | 69.04141326382856 | 66.6332277374775 |
MTEB PolEmo2.0-IN | 89.39058171745152 | 86.8552093529568 |
MTEB PolEmo2.0-OUT | 74.97975708502024 | 58.73081628832407 |
檢索任務
數據集 | MAP@1 | MAP@10 | MAP@100 | MRR@1 | MRR@10 | MRR@100 |
---|---|---|---|---|---|---|
MTEB ArguAna | 36.486000000000004 | 54.842 | 55.206999999999994 | 37.34 | 55.143 | 55.509 |
MTEB CQADupstackAndroidRetrieval | 33.997 | 48.176 | 49.82 | 42.059999999999995 | 53.726 | 54.398 |
MTEB CQADupstackEnglishRetrieval | 35.884 | 48.14 | 49.5 | 44.458999999999996 | 53.751000000000005 | 54.37800000000001 |
MTEB CQADupstackGamingRetrieval | 39.383 | 53.714 | 54.838 | 45.016 | 56.732000000000006 | 57.411 |
MTEB CQADupstackGisRetrieval | 27.426000000000002 | 37.397000000000006 | 38.61 | 29.944 | 39.654 | 40.638000000000005 |
MTEB CQADupstackMathematicaRetrieval | 19.721 | 31.604 | 32.972 | 25.0 | 35.843 | 36.785000000000004 |
MTEB CQADupstackPhysicsRetrieval | 33.784 | 47.522 | 48.949999999999996 | 41.482 | 52.830999999999996 | 53.559999999999995 |
MTEB CQADupstackProgrammersRetrieval | 28.038999999999998 | 41.904 | 43.36 | 35.046 | 46.926 | 47.815000000000005 |
MTEB CQADupstackRetrieval | 28.17291666666667 | 40.025749999999995 | 41.39208333333333 | 33.65925 | 44.085499999999996 | 44.94116666666667 |
MTEB CQADupstackStatsRetrieval | 24.681 | 34.892 | 35.996 | 28.528 | 37.694 | 38.613 |
MTEB CQADupstackTexRetrieval | 18.627 | 27.872000000000003 | 29.237999999999996 | 23.021 | 31.924000000000003 | 32.922000000000004 |
MTEB CQADupstackUnixRetrieval | 31.457 | 42.888 | 44.24 | 37.126999999999995 | 47.083000000000006 | 47.997 |
MTEB CQADupstackWebmastersRetrieval | 27.139999999999997 | 38.801 | 40.549 | 33.004 | 43.864 | 44.667 |
MTEB ClimateFEVER | 22.076999999999998 | 35.44 | 37.651 | 50.163000000000004 | 61.207 | 61.675000000000004 |
MTEB DBPedia | 9.953 | 24.515 | 36.173 | 74.25 | 81.813 | 82.006 |
MTEB FEVER | 87.531 | 93.16799999999999 | 93.341 | 94.014 | 96.761 | 96.762 |
MTEB FiQA2018 | 32.055 | 53.114 | 55.235 | 60.34 | 68.804 | 69.309 |
MTEB HotpotQA | 43.68 | 64.389 | 65.24 | 87.36 | 91.12 | 91.227 |
MTEB MSMARCO | 25.176 | 38.598 | 39.707 | 25.874000000000002 | 39.214 | 40.251 |
MTEB NFCorpus | 7.165000000000001 | 15.424 | 20.28 | 51.702999999999996 | 59.965 | 60.667 |
MTEB NQ | 42.653999999999996 | 59.611999999999995 | 60.32300000000001 | 47.683 | 62.06700000000001 | 62.537 |
MTEB QuoraRetrieval | 72.538 | 86.702 | 87.31 | 83.31 | 89.225 | 89.30399999999999 |
MTEB SCIDOCS | 6.873 | 17.944 | 21.171 | 33.800000000000004 | 46.455 | 47.378 |
MTEB SciFact | 61.260999999999996 | 74.043 | 74.37700000000001 | 64.333 | 74.984 | 75.247 |
MTEB TRECCOVID | 0.254 | 2.064 | 12.909 | 96.0 | 98.0 | 98.0 |
MTEB Touche2020 | 2.976 | 11.389000000000001 | 18.429000000000002 | 40.816 | 58.118 | 58.489999999999995 |
MTEB CmedqaRetrieval | 29.037000000000003 | 42.001 | 43.773 | 43.136 | 51.158 | 52.083 |
MTEB CovidRetrieval | 72.234 | 80.10000000000001 | 80.36 | 72.392 | 80.117 | 80.36999999999999 |
MTEB DuRetrieval | 26.173999999999996 | 80.04 | 82.94500000000001 | 89.5 | 92.996 | 93.06400000000001 |
MTEB EcomRetrieval | 56.10000000000001 | 66.15299999999999 | 66.625 | 56.10000000000001 | 66.15299999999999 | 66.625 |
MTEB MedicalRetrieval | 56.2 | 62.57899999999999 | 63.154999999999994 | 56.3 | 62.629000000000005 | 63.205999999999996 |
MTEB T2Retrieval | 28.666999999999998 | 81.063 | 84.504 | 92.087 | 94.132 | 94.19800000000001 |
MTEB VideoRetrieval | 65.60000000000001 | 74.773 | 75.128 | 65.60000000000001 | 74.773 | 75.128 |
MTEB AlloprofRetrieval | 38.912 | 52.437999999999995 | 53.38 | 44.085 | 55.337 | 56.016999999999996 |
MTEB BSARDRetrieval | 8.108 | 14.710999999999999 | 15.891 | 8.108 | 14.710999999999999 | 15.891 |
MTEB MintakaRetrieval (fr) | 35.913000000000004 | 48.147 | 48.91 | 35.913000000000004 | 48.147 | 48.91 |
MTEB XPQARetrieval (fr) | 40.338 | 61.927 | 63.361999999999995 | 63.551 | 71.006 | 71.501 |
MTEB ArguAna-PL | 35.276999999999994 | 51.086 | 51.788000000000004 | 35.917 | 51.315999999999995 | 52.018 |
MTEB DBPedia-PL | 8.83 | 18.326 | 26.496 | 66.0 | 72.76700000000001 | 73.203 |
MTEB FiQA-PL | 20.587 | 33.095 | 35.24 | 40.586 | 49.033 | 49.952999999999996 |
MTEB HotpotQA-PL | 40.878 | 58.775999999999996 | 59.632 | 81.756 | 86.117 | 86.299 |
MTEB MSMARCO-PL | 2.1839999999999997 | 11.346 | 30.325000000000003 | 86.047 | 89.14699999999999 | 89.46600000000001 |
MTEB NFCorpus-PL | 4.367 | 10.38 | 13.516 | 41.486000000000004 | 48.886 | 49.657000000000004 |
MTEB NQ-PL | 28.616000000000003 | 41.626000000000005 | 42.689 | 32.068000000000005 | 44.029 | 44.87 |
MTEB Quora-PL | 64.917 | 78.74600000000001 | 79.501 | 74.9 | 82.112 | 82.314 |
MTEB SCIDOCS-PL | 3.51 | 9.046999999999999 | 10.823 | 17.299999999999997 | 27.419 | 28.618 |
MTEB SciFact-PL | 54.31700000000001 | 65.564 | 66.062 | 56.99999999999999 | 66.412 | 66.85900000000001 |
MTEB TRECCOVID-PL | 0.245 | 2.051 | 12.009 | 88.0 | 93.0 | 93.0 |
聚類任務
數據集 | V-measure |
---|---|
MTEB ArxivClusteringP2P | 56.461169803700564 |
MTEB ArxivClusteringS2S | 51.73600434466286 |
MTEB BiorxivClusteringP2P | 50.09239610327673 |
MTEB BiorxivClusteringS2S | 46.64733054606282 |
MTEB MedrxivClusteringP2P | 46.22695362087359 |
MTEB MedrxivClusteringS2S | 44.132372165849425 |
MTEB RedditClustering | 73.55219145406065 |
MTEB RedditClusteringP2P | 74.13437105242755 |
MTEB StackExchangeClustering | 79.86443362395185 |
MTEB StackExchangeClusteringP2P | 49.40897096662564 |
MTEB TwentyNewsgroupsClustering | 53.90586138221305 |
MTEB CLSClusteringP2P | 47.07270168705156 |
MTEB CLSClusteringS2S | 45.98511703185043 |
MTEB ThuNewsClusteringP2P | 86.0797948663824 |
MTEB ThuNewsClusteringS2S | 85.10759092255017 |
MTEB AlloProfClusteringP2P | 76.05592323841036 |
MTEB HALClusteringS2S | 30.833269778867116 |
MTEB MLSUMClusteringP2P | 50.0281928004713 |
MTEB MasakhaNEWSClusteringP2P (fra) | 60.19311264967803 |
MTEB 8TagsClustering | 51.36126303874126 |
重排序任務
數據集 | MAP | MRR |
---|---|---|
MTEB AskUbuntuDupQuestions | 67.57827065898053 | 79.08136569493911 |
MTEB MindSmallReranking | 33.35680810650402 | 34.72625715637218 |
MTEB SciDocsRR | 89.09255369305481 | 97.10323445617563 |
MTEB CMedQAv1 | 88.19895157194931 | 90.21424603174603 |
MTEB CMedQAv2 | 88.03317320980119 | 89.9461507936508 |
MTEB StackOverflowDupQuestions | 55.66040806627947 | 56.58670475766064 |
MTEB T2Reranking | 67.80129586475687 | 77.77402311635554 |
MTEB AlloprofReranking | 73.08278490943373 | 74.66561454570449 |
MTEB SyntecReranking | 84.31666666666666 | 84.31666666666666 |
語義文本相似度(STS)任務
數據集 | 餘弦相似度 - Pearson | 餘弦相似度 - Spearman |
---|---|---|
MTEB BIOSSES | 83.53324575999243 | 81.37173362822374 |
MTEB SICK-R | 82.37009118256057 | 79.27986395671529 |
MTEB STS12 | 87.48474767383833 | 79.54505388752513 |
MTEB STS13 | 88.803698035802 | 88.83451367754881 |
MTEB STS14 | 85.27469288153428 | 83.87477064876288 |
MTEB STS15 | 88.12749863201587 | 88.54287568368565 |
MTEB STS16 | 85.68398747560902 | 86.48815303460574 |
MTEB STS17 (en-en) | 88.9057107443124 | 88.7312168757697 |
MTEB STS22 (en) | 67.59391795109886 | 66.87613008631367 |
MTEB STSBenchmark | 87.0820605344619 | 86.8518089863434 |
MTEB AFQMC | 65.58442135663871 | 72.2538631361313 |
MTEB ATEC | 59.99478404929932 | 62.61836216999812 |
MTEB BQ | 79.11941660686553 | 81.25029594540435 |
MTEB LCQMC | 69.67437838574276 | 73.81314174653045 |
MTEB STS22 (zh) | 63.64868296271406 | 66.12800618164744 |
MTEB STSB | 81.2302623912794 | 81.16833673266562 |
MTEB SICKFr | 81.42349425981143 | 78.90454327031226 |
MTEB STS22 (fr) | 81.452697919749 | 82.58116836039301 |
MTEB STSBenchmarkMultilingualSTS (fr) | 85.7419764013806 | 85.46085808849622 |
MTEB SICK-R-PL | 82.23295940859121 | 78.89329160768719 |
MTEB CDSC-R | 93.12903172428328 | 92.66381487060741 |
成對分類任務
數據集 | 餘弦相似度 - 準確率 | 餘弦相似度 - AP | 餘弦相似度 - F1 |
---|---|---|---|
MTEB SprintDuplicateQuestions | 99.71980198019801 | 92.81616007802704 | 85.17548454688318 |
MTEB TwitterSemEval2015 | 87.35769207844072 | 77.9645072410354 | 71.32352941176471 |
MTEB TwitterURLCorpus | 89.38176737687739 | 86.58811861657401 | 79.09430644097604 |
MTEB Cmnli | 82.68190018039687 | 90.18017125327886 | 83.64080906868193 |
MTEB Ocnli | 79.64266377910124 | 84.78274442344829 | 81.16947472745292 |
MTEB PawsX (fr) | 75.25 | 80.86376001270014 | 73.65945437441204 |
MTEB OpusparcusPC (fr) | 99.90069513406156 | 100.0 | 99.95032290114257 |
MTEB CDSC-E | 89.0 | 76.75437826834582 | 66.4850136239782 |
MTEB PPC | 86.4 | 94.1044939667201 | 88.78048780487805 |
MTEB PSC | 97.86641929499072 | 99.36904211868182 | 96.56203288490283 |
MTEB SICK-E-PL | 86.30248675091724 | 83.6756734006714 | 74.97367497367497 |
摘要任務
數據集 | 餘弦相似度 - Pearson | 餘弦相似度 - Spearman |
---|---|---|
MTEB SummEval | 31.51015090598575 | 31.35016454939226 |
MTEB SummEvalFr | 32.61063271753325 | 31.454589417353603 |
Phi 2 GGUF
其他
Phi-2是微軟開發的一個小型但強大的語言模型,具有27億參數,專注於高效推理和高質量文本生成。
大型語言模型 支持多種語言
P
TheBloke
41.5M
205
Roberta Large
MIT
基於掩碼語言建模目標預訓練的大型英語語言模型,採用改進的BERT訓練方法
大型語言模型 英語
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT是BERT基礎模型的蒸餾版本,在保持相近性能的同時更輕量高效,適用於序列分類、標記分類等自然語言處理任務。
大型語言模型 英語
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct 是一個多語言大語言模型,針對多語言對話用例進行了優化,在常見的行業基準測試中表現優異。
大型語言模型 英語
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa是基於100種語言的2.5TB過濾CommonCrawl數據預訓練的多語言模型,採用掩碼語言建模目標進行訓練。
大型語言模型 支持多種語言
X
FacebookAI
9.6M
664
Roberta Base
MIT
基於Transformer架構的英語預訓練模型,通過掩碼語言建模目標在海量文本上訓練,支持文本特徵提取和下游任務微調
大型語言模型 英語
R
FacebookAI
9.3M
488
Opt 125m
其他
OPT是由Meta AI發佈的開放預訓練Transformer語言模型套件,參數量從1.25億到1750億,旨在對標GPT-3系列性能,同時促進大規模語言模型的開放研究。
大型語言模型 英語
O
facebook
6.3M
198
1
基於transformers庫的預訓練模型,適用於多種NLP任務
大型語言模型
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1是Meta推出的多語言大語言模型系列,包含8B、70B和405B參數規模,支持8種語言和代碼生成,優化了多語言對話場景。
大型語言模型
Transformers 支持多種語言

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
T5基礎版是由Google開發的文本到文本轉換Transformer模型,參數規模2.2億,支持多語言NLP任務。
大型語言模型 支持多種語言
T
google-t5
5.4M
702
精選推薦AI模型
Llama 3 Typhoon V1.5x 8b Instruct
專為泰語設計的80億參數指令模型,性能媲美GPT-3.5-turbo,優化了應用場景、檢索增強生成、受限生成和推理任務
大型語言模型
Transformers 支持多種語言

L
scb10x
3,269
16
Cadet Tiny
Openrail
Cadet-Tiny是一個基於SODA數據集訓練的超小型對話模型,專為邊緣設備推理設計,體積僅為Cosmo-3B模型的2%左右。
對話系統
Transformers 英語

C
ToddGoldfarb
2,691
6
Roberta Base Chinese Extractive Qa
基於RoBERTa架構的中文抽取式問答模型,適用於從給定文本中提取答案的任務。
問答系統 中文
R
uer
2,694
98