🚀 segformer-b0-finetuned-morphpadver1-hgo-coord-v3_1
該模型是在NICOPOI - 9/morphpad_coord_hgo_512_4class_v2數據集上對nvidia/mit-b3進行微調後的版本。它在評估集上取得了以下優異結果:
- 損失值:0.0117
- 平均交併比(Mean Iou):0.9981
- 平均準確率:0.9990
- 整體準確率:0.9990
- 準確率 0 - 0:0.9995
- 準確率 0 - 90:0.9985
- 準確率 90 - 0:0.9988
- 準確率 90 - 90:0.9993
- 交併比 0 - 0:0.9991
- 交併比 0 - 90:0.9979
- 交併比 90 - 0:0.9976
- 交併比 90 - 90:0.9978
📚 詳細文檔
模型描述
該模型是基於nvidia/mit-b3在特定數據集上微調得到的,用於圖像分割任務,在評估集上展現出了較高的性能。
預期用途與限制
文檔中未提供該模型預期用途與限制的詳細信息。
訓練和評估數據
文檔中未提供訓練和評估數據的詳細信息。
訓練過程
訓練超參數
訓練過程中使用了以下超參數:
- 學習率(learning_rate):6e - 05
- 訓練批次大小(train_batch_size):1
- 評估批次大小(eval_batch_size):1
- 隨機種子(seed):42
- 優化器:使用
OptimizerNames.ADAMW_TORCH
,其中betas=(0.9, 0.999)
,epsilon = 1e - 08
,無額外優化器參數
- 學習率調度器類型(lr_scheduler_type):線性
- 訓練輪數(num_epochs):60
訓練結果
訓練損失 |
輪數 |
步數 |
驗證損失 |
平均交併比 |
平均準確率 |
整體準確率 |
準確率 0 - 0 |
準確率 0 - 90 |
準確率 90 - 0 |
準確率 90 - 90 |
交併比 0 - 0 |
交併比 0 - 90 |
交併比 90 - 0 |
交併比 90 - 90 |
0.903 |
2.6525 |
4000 |
0.8952 |
0.3916 |
0.5570 |
0.5567 |
0.5335 |
0.6125 |
0.4890 |
0.5929 |
0.4534 |
0.3418 |
0.3411 |
0.4299 |
0.6373 |
5.3050 |
8000 |
0.5078 |
0.6237 |
0.7643 |
0.7643 |
0.7676 |
0.8339 |
0.6741 |
0.7817 |
0.6758 |
0.5472 |
0.6022 |
0.6698 |
0.2851 |
7.9576 |
12000 |
0.2955 |
0.7612 |
0.8642 |
0.8642 |
0.8669 |
0.8687 |
0.8339 |
0.8874 |
0.7959 |
0.7358 |
0.7500 |
0.7631 |
0.2309 |
10.6101 |
16000 |
0.1305 |
0.9184 |
0.9574 |
0.9574 |
0.9575 |
0.9381 |
0.9648 |
0.9692 |
0.9333 |
0.9074 |
0.8991 |
0.9337 |
0.0907 |
13.2626 |
20000 |
0.1249 |
0.9267 |
0.9620 |
0.9620 |
0.9636 |
0.9541 |
0.9594 |
0.9708 |
0.9379 |
0.9205 |
0.9169 |
0.9316 |
0.3051 |
15.9151 |
24000 |
0.0529 |
0.9675 |
0.9835 |
0.9835 |
0.9842 |
0.9805 |
0.9839 |
0.9854 |
0.9712 |
0.9636 |
0.9626 |
0.9728 |
0.0659 |
18.5676 |
28000 |
0.0630 |
0.9670 |
0.9832 |
0.9833 |
0.9852 |
0.9747 |
0.9885 |
0.9846 |
0.9719 |
0.9642 |
0.9633 |
0.9687 |
0.0474 |
21.2202 |
32000 |
0.0454 |
0.9768 |
0.9882 |
0.9883 |
0.9910 |
0.9856 |
0.9865 |
0.9899 |
0.9783 |
0.9737 |
0.9747 |
0.9805 |
0.0449 |
23.8727 |
36000 |
0.0468 |
0.9795 |
0.9896 |
0.9896 |
0.9900 |
0.9812 |
0.9900 |
0.9973 |
0.9828 |
0.9743 |
0.9783 |
0.9824 |
0.0552 |
26.5252 |
40000 |
0.0266 |
0.9884 |
0.9942 |
0.9942 |
0.9949 |
0.9917 |
0.9947 |
0.9953 |
0.9888 |
0.9865 |
0.9866 |
0.9916 |
0.0541 |
29.1777 |
44000 |
0.0290 |
0.9908 |
0.9954 |
0.9954 |
0.9951 |
0.9951 |
0.9967 |
0.9946 |
0.9921 |
0.9897 |
0.9905 |
0.9909 |
0.0082 |
31.8302 |
48000 |
0.0421 |
0.9891 |
0.9945 |
0.9945 |
0.9940 |
0.9924 |
0.9951 |
0.9966 |
0.9908 |
0.9869 |
0.9884 |
0.9904 |
0.0061 |
34.4828 |
52000 |
0.0345 |
0.9923 |
0.9961 |
0.9961 |
0.9971 |
0.9941 |
0.9966 |
0.9966 |
0.9939 |
0.9912 |
0.9916 |
0.9922 |
0.0053 |
37.1353 |
56000 |
0.0256 |
0.9941 |
0.9970 |
0.9970 |
0.9976 |
0.9972 |
0.9966 |
0.9968 |
0.9957 |
0.9928 |
0.9929 |
0.9949 |
0.0045 |
39.7878 |
60000 |
0.0256 |
0.9937 |
0.9968 |
0.9968 |
0.9978 |
0.9959 |
0.9959 |
0.9978 |
0.9937 |
0.9927 |
0.9926 |
0.9957 |
0.0046 |
42.4403 |
64000 |
0.0171 |
0.9964 |
0.9982 |
0.9982 |
0.9983 |
0.9976 |
0.9987 |
0.9981 |
0.9972 |
0.9958 |
0.9955 |
0.9969 |
0.0032 |
45.0928 |
68000 |
0.0293 |
0.9957 |
0.9979 |
0.9979 |
0.9983 |
0.9969 |
0.9975 |
0.9988 |
0.9966 |
0.9950 |
0.9950 |
0.9964 |
0.003 |
47.7454 |
72000 |
0.0251 |
0.9964 |
0.9982 |
0.9982 |
0.9984 |
0.9973 |
0.9984 |
0.9987 |
0.9973 |
0.9952 |
0.9965 |
0.9966 |
0.0035 |
50.3979 |
76000 |
0.0245 |
0.9973 |
0.9986 |
0.9986 |
0.9993 |
0.9982 |
0.9983 |
0.9987 |
0.9982 |
0.9969 |
0.9963 |
0.9977 |
0.0025 |
53.0504 |
80000 |
0.0222 |
0.9972 |
0.9986 |
0.9986 |
0.9990 |
0.9980 |
0.9987 |
0.9986 |
0.9985 |
0.9965 |
0.9970 |
0.9968 |
0.0023 |
55.7029 |
84000 |
0.0104 |
0.9982 |
0.9991 |
0.9991 |
0.9994 |
0.9989 |
0.9987 |
0.9993 |
0.9988 |
0.9980 |
0.9975 |
0.9983 |
0.0022 |
58.3554 |
88000 |
0.0117 |
0.9981 |
0.9990 |
0.9990 |
0.9995 |
0.9985 |
0.9988 |
0.9993 |
0.9991 |
0.9979 |
0.9976 |
0.9978 |
框架版本
- Transformers 4.48.3
- Pytorch 2.1.0
- Datasets 3.2.0
- Tokenizers 0.21.0
📄 許可證
該模型的許可證為其他(other)。
📋 模型信息
屬性 |
詳情 |
模型類型 |
基於SegFormer架構微調的圖像分割模型 |
基礎模型 |
nvidia/mit - b3 |
標籤 |
視覺、圖像分割、由訓練器生成 |