模型概述
模型特點
模型能力
使用案例
🚀 DeepSeek-Coder-V2:突破代碼智能領域閉源模型的壁壘
DeepSeek-Coder-V2是一個開源的混合專家(MoE)代碼語言模型,在特定代碼任務中表現可與GPT4-Turbo相媲美。它在DeepSeek-V2的中間檢查點基礎上,額外使用6萬億個標記進行進一步預訓練,顯著提升了DeepSeek-V2的編碼和數學推理能力,同時在通用語言任務中保持了相當的性能。與DeepSeek-Coder-33B相比,DeepSeek-Coder-V2在各種代碼相關任務、推理和通用能力方面都有顯著進步。此外,它支持的編程語言從86種擴展到338種,上下文長度從16K擴展到128K。
🚀 快速開始
模型下載
我們基於DeepSeekMoE框架,向公眾發佈了具有16B和236B參數的DeepSeek-Coder-V2,其激活參數僅為2.4B和21B,包括基礎模型和指令模型。
模型 | 總參數數量 | 激活參數數量 | 上下文長度 | 下載地址 |
---|---|---|---|---|
DeepSeek-Coder-V2-Lite-Base | 16B | 2.4B | 128k | 🤗 HuggingFace |
DeepSeek-Coder-V2-Lite-Instruct | 16B | 2.4B | 128k | 🤗 HuggingFace |
DeepSeek-Coder-V2-Base | 236B | 21B | 128k | 🤗 HuggingFace |
DeepSeek-Coder-V2-Instruct | 236B | 21B | 128k | 🤗 HuggingFace |
DeepSeek-Coder-V2-Instruct-0724 | 236B | 21B | 128k | 🤗 HuggingFace |
在線體驗
你可以在DeepSeek的官方網站上與DeepSeek-Coder-V2進行對話:coder.deepseek.com
API平臺
我們還在DeepSeek平臺上提供了與OpenAI兼容的API:platform.deepseek.com,你可以按需付費使用,價格極具競爭力。
✨ 主要特性
- 性能卓越:在標準基準評估中,DeepSeek-Coder-V2在編碼和數學基準測試中表現優於GPT4-Turbo、Claude 3 Opus和Gemini 1.5 Pro等閉源模型。
- 語言支持廣泛:支持的編程語言從86種擴展到338種,具體支持的語言列表可查看此處。
- 上下文長度擴展:上下文長度從16K擴展到128K,能夠處理更長的輸入。
- 新功能豐富:支持函數調用、JSON輸出和FIM補全。
📦 安裝指南
若要在本地使用DeepSeek-Coder-V2-Lite模型進行推理,使用BF16格式時需要80GB * 8的GPU。
💻 使用示例
基於Huggingface的Transformers進行推理
你可以直接使用Huggingface的Transformers進行模型推理。
代碼補全
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
input_text = "#write a quick sort algorithm"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
代碼插入
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Base", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
input_text = """<|fim▁begin|>def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = []
right = []
<|fim▁hole|>
if arr[i] < pivot:
left.append(arr[i])
else:
right.append(arr[i])
return quick_sort(left) + [pivot] + quick_sort(right)<|fim▁end|>"""
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_length=128)
print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
對話補全
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
messages=[
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
# tokenizer.eos_token_id is the id of <|end▁of▁sentence|> token
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
完整的對話模板可以在Huggingface模型倉庫的tokenizer_config.json
中找到。
對話模板示例如下:
<|begin▁of▁sentence|>User: {user_message_1}
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
Assistant:
你還可以添加可選的系統消息:
<|begin▁of▁sentence|>{system_message}
User: {user_message_1}
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
Assistant:
使用vLLM進行推理(推薦)
若要使用vLLM進行模型推理,請將此拉取請求合併到你的vLLM代碼庫中:https://github.com/vllm-project/vllm/pull/4650。
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
max_model_len, tp_size = 8192, 1
model_name = "deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
messages_list = [
[{"role": "user", "content": "Who are you?"}],
[{"role": "user", "content": "write a quick sort algorithm in python."}],
[{"role": "user", "content": "Write a piece of quicksort code in C++."}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
新功能使用示例
函數調用
函數調用允許模型調用外部工具以增強其能力。
# Assume that `model` and `tokenizer` are loaded
model.generation_config = GenerationConfig(do_sample=False, max_new_tokens=128, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id)
tool_system_prompt = """You are a helpful Assistant.
## Tools
### Function
You have the following functions available:
- `get_current_weather`:
```json
{
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA"
},
"unit": {
"type": "string",
"enum": [
"celsius",
"fahrenheit"
]
}
},
"required": [
"location"
]
}
}
```"""
tool_call_messages = [{"role": "system", "content": tool_system_prompt}, {"role": "user", "content": "What's the weather like in Tokyo and Paris?"}]
tool_call_inputs = tokenizer.apply_chat_template(tool_call_messages, add_generation_prompt=True, return_tensors="pt")
tool_call_outputs = model.generate(tool_call_inputs.to(model.device))
# Generated text: '<|tool▁calls▁begin|><|tool▁call▁begin|>function<|tool▁sep|>get_current_weather\n```json\n{"location": "Tokyo"}\n```<|tool▁call▁end|>\n<|tool▁call▁begin|>function<|tool▁sep|>get_current_weather\n```json\n{"location": "Paris"}\n```<|tool▁call▁end|><|tool▁calls▁end|><|end▁of▁sentence|>'
# Mock response of calling `get_current_weather`
tool_messages = [{"role": "tool", "content": '{"location": "Tokyo", "temperature": "10", "unit": null}'}, {"role": "tool", "content": '{"location": "Paris", "temperature": "22", "unit": null}'}]
tool_inputs = tokenizer.apply_chat_template(tool_messages, add_generation_prompt=False, return_tensors="pt")[:, 1:]
tool_inputs = torch.cat([tool_call_outputs, tool_inputs.to(model.device)], dim=1)
tool_outputs = model.generate(tool_inputs)
# Generated text: The current weather in Tokyo is 10 degrees, and in Paris, it is 22 degrees.<|end▁of▁sentence|>
JSON輸出
你可以使用JSON輸出模式確保模型生成有效的JSON對象。要激活此模式,需要在系統提示中添加特殊指令。
# Assume that `model` and `tokenizer` are loaded
model.generation_config = GenerationConfig(do_sample=False, max_new_tokens=128, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id)
user_system_prompt = 'The user will provide some exam text. Please parse the "question" and "answer" and output them in JSON format.'
json_system_prompt = f"""{user_system_prompt}
## Response Format
Reply with JSON object ONLY."""
json_messages = [{"role": "system", "content": json_system_prompt}, {"role": "user", "content": "Which is the highest mountain in the world? Mount Everest."}]
json_inputs = tokenizer.apply_chat_template(json_messages, add_generation_prompt=True, return_tensors="pt")
json_outpus = model.generate(json_inputs.to(model.device))
# Generated text: '```json\n{\n "question": "Which is the highest mountain in the world?",\n "answer": "Mount Everest."\n}\n```<|end▁of▁sentence|>'
FIM補全
在FIM(中間填充)補全中,你可以提供前綴和可選的後綴,模型將補全中間的內容。
# Assume that `model` and `tokenizer` are loaded
model.generation_config = GenerationConfig(do_sample=False, max_new_tokens=128, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.eos_token_id)
prefix = """def quick_sort(arr):
if len(arr) <= 1:
return arr
pivot = arr[0]
left = []
right = []
"""
suffix = """
if arr[i] < pivot:
left.append(arr[i])
else:
right.append(arr[i])
return quick_sort(left) + [pivot] + quick_sort(right)"""
fim_prompt = f"<|fim▁begin|>{prefix}<|fim▁hole|>{suffix}<|fim▁end|>"
fim_inputs = tokenizer(fim_prompt, add_special_tokens=True, return_tensors="pt").input_ids
fim_outputs = model.generate(fim_inputs.to(model.device))
# Generated text: " for i in range(1, len(arr)):<|end▁of▁sentence|>"
📚 詳細文檔
有關模型的詳細信息,請參考論文鏈接。
🔧 技術細節
DeepSeek-Coder-V2是一個基於混合專家(MoE)架構的代碼語言模型,它在DeepSeek-V2的中間檢查點基礎上進行了進一步預訓練,使用了額外的6萬億個標記。通過這種方式,它顯著提升了編碼和數學推理能力,同時在通用語言任務中保持了相當的性能。
📄 許可證
本代碼倉庫遵循MIT許可證。DeepSeek-Coder-V2基礎/指令模型的使用需遵循模型許可證。DeepSeek-Coder-V2系列(包括基礎和指令模型)支持商業使用。
聯繫我們
如果你有任何問題,請提出問題或通過service@deepseek.com聯繫我們。



