🚀 LLaVAction-7B
LLaVAction-7B是一個用於動作識別的多模態大語言模型,基於Qwen2語言模型訓練,支持最多64幀視頻處理,在多個多模態數據集上有不錯的準確率表現。
🚀 快速開始
LLaVAction-7B模型基於Qwen2語言模型,在EPIC - KITCHENS - 100 - MQA數據集上進行訓練,上下文窗口為32K個標記,最多支持64幀視頻。
✨ 主要特性
- 基於Qwen2語言模型,上下文窗口達32K標記。
- 支持最多64幀視頻處理。
- 在多個多模態數據集上進行評估,有較好的準確率表現。
📦 安裝指南
使用前需安裝llavaction
庫:
!pip install llavaction
💻 使用示例
基礎用法
video_path = "XXXX"
perspective_prompt = "You are seeing this video from egocentric view and you are the person. Your hands are sometimes interacting with objects. What action are you doing?"
task_prompt = "Describe in details what you see from the video frames."
def load_video(video_path, max_frames_num,fps=1,force_sample=False):
if max_frames_num == 0:
return np.zeros((1, 336, 336, 3))
vr = VideoReader(video_path, ctx=cpu(0),num_threads=1)
total_frame_num = len(vr)
video_time = total_frame_num / vr.get_avg_fps()
fps = round(vr.get_avg_fps()/fps)
frame_idx = [i for i in range(0, len(vr), fps)]
if len(frame_idx) > max_frames_num or force_sample:
sample_fps = max_frames_num
uniform_sampled_frames = np.linspace(0, total_frame_num - 1, sample_fps, dtype=int)
frame_idx = uniform_sampled_frames.tolist()
frame_time = [i/vr.get_avg_fps() for i in frame_idx]
spare_frames = vr.get_batch(frame_idx).asnumpy()
return spare_frames,frame_time,video_time
pretrained = "MLAdaptiveIntelligence/LLaVAction-7B"
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(pretrained, None, model_name, torch_dtype="bfloat16", device_map=device_map)
model.eval()
max_frames_num = 64
video,frame_time,video_time = load_video(video_path, max_frames_num, 1, force_sample=True)
video = image_processor.preprocess(video, return_tensors="pt")["pixel_values"].cuda().to(torch.bfloat16)
video = [video]
conv_template = "qwen_1_5"
time_instruction = f"The video lasts for {video_time:.2f} seconds, and {len(video[0])} frames are uniformly sampled from it. "
question = DEFAULT_IMAGE_TOKEN + f"\n{time_instruction}\n{perspective_prompt} {task_prompt}"
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
cont = model.generate(
input_ids,
images=video,
modalities= ["video"],
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0].strip()
print(text_outputs)
📚 詳細文檔
模型
- 架構:SO400M + Qwen2
- 初始化模型:lmms - lab/LLaVA - Video - 7B - Qwen2
- 數據:混合LLaVA - 178K和EPIC - KITCHENS - 100 - MQA數據集,訓練2個週期,全量模型訓練
- 精度:bfloat16
硬件與軟件
- GPU:32 * Nvidia GH - 200(用於全模型系列訓練)
- 編排工具:HuggingFace Trainer
- 神經網絡框架:PyTorch
評估指標
數據集 |
準確率 |
EgoSchema |
59 |
MVBench |
61.1 |
NextQA |
82.8 |
PercepTest |
70.2 |
LongVideoBench |
58.6 |
VideoMME |
63.9 |
VideoMME (w - subs) |
71.4 |
🔧 技術細節
LLaVAction-7B模型的詳細技術細節可參考Ye等人2025年的論文:arxiv.org/abs/2503.18712 。
📄 許可證
本項目採用CC - BY - NC - SA - 4.0許可證。
📚 引用
@article{YeQi2025llavaction,
title={LLaVAction: evaluating and training multi-modal large language models for action recognition},
author={Ye, Shaokai and Qi, Haozhe and Mathis, Alexander and Mathis, Mackenzie W.},
journal={arXiv preprint},
year={2025}
}