🚀 modeversion1_m7_e4
該模型是基於 google/vit-base-patch16-224-in21k 在 sudo-s/herbier_mesuem7 數據集上進行微調的版本。它在評估集上取得了以下結果:
🚀 快速開始
此部分文檔未提供快速開始的相關內容。
✨ 主要特性
此部分文檔未提供模型主要特性的相關內容。
📚 詳細文檔
模型描述
此部分文檔未提供更多模型描述的相關信息。
預期用途與限制
此部分文檔未提供更多預期用途與限制的相關信息。
訓練和評估數據
此部分文檔未提供更多訓練和評估數據的相關信息。
訓練過程
訓練超參數
訓練過程中使用了以下超參數:
- 學習率:0.0002
- 訓練批次大小:16
- 評估批次大小:8
- 隨機種子:42
- 優化器:Adam(β1 = 0.9,β2 = 0.999,ε = 1e-08)
- 學習率調度器類型:線性
- 訓練輪數:4
- 混合精度訓練:原生自動混合精度(Native AMP)
訓練結果
訓練損失 |
輪數 |
步數 |
驗證損失 |
準確率 |
4.073 |
0.06 |
100 |
3.9370 |
0.1768 |
3.4186 |
0.12 |
200 |
3.2721 |
0.2590 |
2.6745 |
0.18 |
300 |
2.6465 |
0.3856 |
2.2806 |
0.23 |
400 |
2.2600 |
0.4523 |
1.9275 |
0.29 |
500 |
1.9653 |
0.5109 |
1.6958 |
0.35 |
600 |
1.6815 |
0.6078 |
1.2797 |
0.41 |
700 |
1.4514 |
0.6419 |
1.3772 |
0.47 |
800 |
1.3212 |
0.6762 |
1.1765 |
0.53 |
900 |
1.1476 |
0.7028 |
1.0152 |
0.59 |
1000 |
1.0357 |
0.7313 |
0.7861 |
0.64 |
1100 |
1.0230 |
0.7184 |
1.0262 |
0.7 |
1200 |
0.9469 |
0.7386 |
0.8905 |
0.76 |
1300 |
0.8184 |
0.7756 |
0.6919 |
0.82 |
1400 |
0.8083 |
0.7711 |
0.7494 |
0.88 |
1500 |
0.7601 |
0.7825 |
0.5078 |
0.94 |
1600 |
0.6884 |
0.8056 |
0.7134 |
1.0 |
1700 |
0.6311 |
0.8160 |
0.4328 |
1.06 |
1800 |
0.5740 |
0.8252 |
0.4971 |
1.11 |
1900 |
0.5856 |
0.8290 |
0.5207 |
1.17 |
2000 |
0.6219 |
0.8167 |
0.4027 |
1.23 |
2100 |
0.5703 |
0.8266 |
0.5605 |
1.29 |
2200 |
0.5217 |
0.8372 |
0.2723 |
1.35 |
2300 |
0.4805 |
0.8565 |
0.401 |
1.41 |
2400 |
0.4811 |
0.8490 |
0.3419 |
1.47 |
2500 |
0.4619 |
0.8608 |
0.301 |
1.52 |
2600 |
0.4318 |
0.8712 |
0.2872 |
1.58 |
2700 |
0.4698 |
0.8573 |
0.2451 |
1.64 |
2800 |
0.4210 |
0.8729 |
0.2211 |
1.7 |
2900 |
0.3645 |
0.8851 |
0.3145 |
1.76 |
3000 |
0.4139 |
0.8715 |
0.2001 |
1.82 |
3100 |
0.3605 |
0.8864 |
0.3095 |
1.88 |
3200 |
0.4274 |
0.8675 |
0.1915 |
1.93 |
3300 |
0.2910 |
0.9101 |
0.2465 |
1.99 |
3400 |
0.2726 |
0.9103 |
0.1218 |
2.05 |
3500 |
0.2742 |
0.9129 |
0.0752 |
2.11 |
3600 |
0.2572 |
0.9183 |
0.1067 |
2.17 |
3700 |
0.2584 |
0.9203 |
0.0838 |
2.23 |
3800 |
0.2458 |
0.9212 |
0.1106 |
2.29 |
3900 |
0.2412 |
0.9237 |
0.092 |
2.34 |
4000 |
0.2232 |
0.9277 |
0.1056 |
2.4 |
4100 |
0.2817 |
0.9077 |
0.0696 |
2.46 |
4200 |
0.2334 |
0.9285 |
0.0444 |
2.52 |
4300 |
0.2142 |
0.9363 |
0.1046 |
2.58 |
4400 |
0.2036 |
0.9352 |
0.066 |
2.64 |
4500 |
0.2115 |
0.9365 |
0.0649 |
2.7 |
4600 |
0.1730 |
0.9448 |
0.0513 |
2.75 |
4700 |
0.2148 |
0.9339 |
0.0917 |
2.81 |
4800 |
0.1810 |
0.9438 |
0.0879 |
2.87 |
4900 |
0.1971 |
0.9388 |
0.1052 |
2.93 |
5000 |
0.1602 |
0.9508 |
0.0362 |
2.99 |
5100 |
0.1475 |
0.9556 |
0.041 |
3.05 |
5200 |
0.1328 |
0.9585 |
0.0156 |
3.11 |
5300 |
0.1389 |
0.9571 |
0.0047 |
3.17 |
5400 |
0.1224 |
0.9638 |
0.0174 |
3.22 |
5500 |
0.1193 |
0.9651 |
0.0087 |
3.28 |
5600 |
0.1276 |
0.9622 |
0.0084 |
3.34 |
5700 |
0.1134 |
0.9662 |
0.0141 |
3.4 |
5800 |
0.1239 |
0.9631 |
0.0291 |
3.46 |
5900 |
0.1199 |
0.9645 |
0.0049 |
3.52 |
6000 |
0.1103 |
0.9679 |
0.0055 |
3.58 |
6100 |
0.1120 |
0.9662 |
0.0061 |
3.63 |
6200 |
0.1071 |
0.9668 |
0.0054 |
3.69 |
6300 |
0.1032 |
0.9697 |
0.0041 |
3.75 |
6400 |
0.0961 |
0.9711 |
0.0018 |
3.81 |
6500 |
0.0930 |
0.9718 |
0.0032 |
3.87 |
6600 |
0.0918 |
0.9730 |
0.0048 |
3.93 |
6700 |
0.0906 |
0.9732 |
0.002 |
3.99 |
6800 |
0.0902 |
0.9731 |
框架版本
- Transformers 4.20.1
- Pytorch 1.12.0
- Datasets 2.3.2
- Tokenizers 0.12.1
📄 許可證
該模型使用 Apache-2.0 許可證。