🚀 mobilevit-small-10k-steps
這個模型是 apple/deeplabv3-mobilevit-small 在 Efferbach/lane_master2 數據集上的微調版本。它在評估集上取得了以下結果:
- 損失值:0.0821
- 平均交併比(Mean Iou):0.0
- 平均準確率:0.0
- 總體準確率:0.0
- 背景準確率:nan
- 左側準確率:0.0
- 右側準確率:0.0
- 背景交併比:0.0
- 左側交併比:0.0
- 右側交併比:0.0
📚 詳細文檔
訓練過程
訓練超參數
訓練過程中使用了以下超參數:
- 學習率:6e-05
- 訓練批次大小:8
- 評估批次大小:8
- 隨機種子:1337
- 優化器:Adam(β1=0.9,β2=0.999,ε=1e-08)
- 學習率調度器類型:多項式
- 訓練步數:10000
訓練結果
訓練損失 |
輪數 |
步數 |
驗證損失 |
平均交併比 |
平均準確率 |
總體準確率 |
背景準確率 |
左側準確率 |
右側準確率 |
背景交併比 |
左側交併比 |
右側交併比 |
0.5041 |
1.0 |
385 |
0.3382 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.1553 |
2.0 |
770 |
0.1387 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.1019 |
3.0 |
1155 |
0.1037 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0882 |
4.0 |
1540 |
0.0883 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0828 |
5.0 |
1925 |
0.0823 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0807 |
6.0 |
2310 |
0.0820 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0795 |
7.0 |
2695 |
0.0804 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0786 |
8.0 |
3080 |
0.0784 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0777 |
9.0 |
3465 |
0.0786 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0771 |
10.0 |
3850 |
0.0774 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0773 |
11.0 |
4235 |
0.0775 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0765 |
12.0 |
4620 |
0.0782 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0757 |
13.0 |
5005 |
0.0775 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0756 |
14.0 |
5390 |
0.0774 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0754 |
15.0 |
5775 |
0.0775 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0746 |
16.0 |
6160 |
0.0775 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.074 |
17.0 |
6545 |
0.0779 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0736 |
18.0 |
6930 |
0.0792 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0737 |
19.0 |
7315 |
0.0801 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.073 |
20.0 |
7700 |
0.0804 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0729 |
21.0 |
8085 |
0.0805 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0734 |
22.0 |
8470 |
0.0804 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0726 |
23.0 |
8855 |
0.0811 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0726 |
24.0 |
9240 |
0.0816 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0721 |
25.0 |
9625 |
0.0822 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
0.0727 |
25.97 |
10000 |
0.0821 |
0.0 |
0.0 |
0.0 |
nan |
0.0 |
0.0 |
0.0 |
0.0 |
0.0 |
框架版本
- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu118
- Datasets 2.11.0
- Tokenizers 0.13.3
📄 許可證
其他許可證