🚀 segformer-b4-crack-segmentation-dataset
該模型是圖像分割領域的重要工具,基於特定數據集微調,能有效對裂縫進行分割識別,在相關評估指標上表現良好,為裂縫檢測等應用場景提供了有力支持。
🚀 快速開始
此模型是 nvidia/mit-b0 在 None 數據集上的微調版本。它在評估集上取得了以下結果:
- 損失值:0.0594
- 平均交併比(Mean Iou):0.3346
- 平均準確率:0.6691
- 整體準確率:0.6691
- 背景準確率:nan
- 裂縫準確率:0.6691
- 背景交併比:0.0
- 裂縫交併比:0.6691
🔧 技術細節
訓練超參數
訓練過程中使用了以下超參數:
- 學習率:6e - 05
- 訓練批次大小:2
- 評估批次大小:2
- 隨機種子:42
- 優化器:Adam(β1 = 0.9,β2 = 0.999,ε = 1e - 08)
- 學習率調度器類型:線性
- 訓練輪數:1
訓練結果
訓練損失 |
輪數 |
步數 |
驗證損失 |
平均交併比 |
平均準確率 |
整體準確率 |
背景準確率 |
裂縫準確率 |
背景交併比 |
裂縫交併比 |
0.2287 |
0.02 |
100 |
0.2515 |
0.1734 |
0.3468 |
0.3468 |
nan |
0.3468 |
0.0 |
0.3468 |
0.1792 |
0.04 |
200 |
0.1594 |
0.1671 |
0.3342 |
0.3342 |
nan |
0.3342 |
0.0 |
0.3342 |
0.1177 |
0.06 |
300 |
0.1762 |
0.1044 |
0.2088 |
0.2088 |
nan |
0.2088 |
0.0 |
0.2088 |
0.0821 |
0.08 |
400 |
0.1706 |
0.2065 |
0.4130 |
0.4130 |
nan |
0.4130 |
0.0 |
0.4130 |
0.0666 |
0.1 |
500 |
0.1507 |
0.1931 |
0.3863 |
0.3863 |
nan |
0.3863 |
0.0 |
0.3863 |
0.0675 |
0.12 |
600 |
0.1374 |
0.3114 |
0.6227 |
0.6227 |
nan |
0.6227 |
0.0 |
0.6227 |
0.0267 |
0.15 |
700 |
0.1400 |
0.2171 |
0.4342 |
0.4342 |
nan |
0.4342 |
0.0 |
0.4342 |
0.0192 |
0.17 |
800 |
0.1067 |
0.1594 |
0.3187 |
0.3187 |
nan |
0.3187 |
0.0 |
0.3187 |
0.0711 |
0.19 |
900 |
0.1002 |
0.2915 |
0.5830 |
0.5830 |
nan |
0.5830 |
0.0 |
0.5830 |
0.0761 |
0.21 |
1000 |
0.0785 |
0.3099 |
0.6199 |
0.6199 |
nan |
0.6199 |
0.0 |
0.6199 |
0.0802 |
0.23 |
1100 |
0.0829 |
0.3086 |
0.6173 |
0.6173 |
nan |
0.6173 |
0.0 |
0.6173 |
0.1058 |
0.25 |
1200 |
0.0895 |
0.2139 |
0.4278 |
0.4278 |
nan |
0.4278 |
0.0 |
0.4278 |
0.0409 |
0.27 |
1300 |
0.0792 |
0.3237 |
0.6475 |
0.6475 |
nan |
0.6475 |
0.0 |
0.6475 |
0.063 |
0.29 |
1400 |
0.0739 |
0.3084 |
0.6168 |
0.6168 |
nan |
0.6168 |
0.0 |
0.6168 |
0.0669 |
0.31 |
1500 |
0.0747 |
0.3326 |
0.6653 |
0.6653 |
nan |
0.6653 |
0.0 |
0.6653 |
0.1277 |
0.33 |
1600 |
0.0735 |
0.3149 |
0.6297 |
0.6297 |
nan |
0.6297 |
0.0 |
0.6297 |
0.0388 |
0.35 |
1700 |
0.0708 |
0.2525 |
0.5050 |
0.5050 |
nan |
0.5050 |
0.0 |
0.5050 |
0.0332 |
0.37 |
1800 |
0.0726 |
0.2908 |
0.5816 |
0.5816 |
nan |
0.5816 |
0.0 |
0.5816 |
0.0435 |
0.4 |
1900 |
0.0673 |
0.2893 |
0.5786 |
0.5786 |
nan |
0.5786 |
0.0 |
0.5786 |
0.1297 |
0.42 |
2000 |
0.0698 |
0.3438 |
0.6877 |
0.6877 |
nan |
0.6877 |
0.0 |
0.6877 |
0.1202 |
0.44 |
2100 |
0.0745 |
0.2899 |
0.5798 |
0.5798 |
nan |
0.5798 |
0.0 |
0.5798 |
0.0549 |
0.46 |
2200 |
0.0657 |
0.3522 |
0.7044 |
0.7044 |
nan |
0.7044 |
0.0 |
0.7044 |
0.0223 |
0.48 |
2300 |
0.0808 |
0.2686 |
0.5372 |
0.5372 |
nan |
0.5372 |
0.0 |
0.5372 |
0.0464 |
0.5 |
2400 |
0.0631 |
0.3221 |
0.6442 |
0.6442 |
nan |
0.6442 |
0.0 |
0.6442 |
0.0364 |
0.52 |
2500 |
0.0778 |
0.3410 |
0.6820 |
0.6820 |
nan |
0.6820 |
0.0 |
0.6820 |
0.047 |
0.54 |
2600 |
0.0689 |
0.3489 |
0.6978 |
0.6978 |
nan |
0.6978 |
0.0 |
0.6978 |
0.0322 |
0.56 |
2700 |
0.0640 |
0.2863 |
0.5727 |
0.5727 |
nan |
0.5727 |
0.0 |
0.5727 |
0.0453 |
0.58 |
2800 |
0.0574 |
0.3340 |
0.6681 |
0.6681 |
nan |
0.6681 |
0.0 |
0.6681 |
0.0347 |
0.6 |
2900 |
0.0611 |
0.3289 |
0.6578 |
0.6578 |
nan |
0.6578 |
0.0 |
0.6578 |
0.0916 |
0.62 |
3000 |
0.0609 |
0.3357 |
0.6714 |
0.6714 |
nan |
0.6714 |
0.0 |
0.6714 |
0.0523 |
0.65 |
3100 |
0.0557 |
0.3318 |
0.6637 |
0.6637 |
nan |
0.6637 |
0.0 |
0.6637 |
0.1246 |
0.67 |
3200 |
0.0558 |
0.3294 |
0.6588 |
0.6588 |
nan |
0.6588 |
0.0 |
0.6588 |
0.0501 |
0.69 |
3300 |
0.0697 |
0.2955 |
0.5910 |
0.5910 |
nan |
0.5910 |
0.0 |
0.5910 |
0.0312 |
0.71 |
3400 |
0.0604 |
0.3414 |
0.6827 |
0.6827 |
nan |
0.6827 |
0.0 |
0.6827 |
0.0449 |
0.73 |
3500 |
0.0612 |
0.3305 |
0.6611 |
0.6611 |
nan |
0.6611 |
0.0 |
0.6611 |
0.0111 |
0.75 |
3600 |
0.0617 |
0.2930 |
0.5860 |
0.5860 |
nan |
0.5860 |
0.0 |
0.5860 |
0.0206 |
0.77 |
3700 |
0.0627 |
0.3663 |
0.7326 |
0.7326 |
nan |
0.7326 |
0.0 |
0.7326 |
0.051 |
0.79 |
3800 |
0.0649 |
0.3159 |
0.6318 |
0.6318 |
nan |
0.6318 |
0.0 |
0.6318 |
0.0243 |
0.81 |
3900 |
0.0600 |
0.3370 |
0.6740 |
0.6740 |
nan |
0.6740 |
0.0 |
0.6740 |
0.0108 |
0.83 |
4000 |
0.0614 |
0.3595 |
0.7190 |
0.7190 |
nan |
0.7190 |
0.0 |
0.7190 |
0.0951 |
0.85 |
4100 |
0.0564 |
0.3571 |
0.7142 |
0.7142 |
nan |
0.7142 |
0.0 |
0.7142 |
0.0731 |
0.87 |
4200 |
0.0597 |
0.3497 |
0.6994 |
0.6994 |
nan |
0.6994 |
0.0 |
0.6994 |
0.0307 |
0.9 |
4300 |
0.0636 |
0.3468 |
0.6937 |
0.6937 |
nan |
0.6937 |
0.0 |
0.6937 |
0.1039 |
0.92 |
4400 |
0.0594 |
0.3397 |
0.6795 |
0.6795 |
nan |
0.6795 |
0.0 |
0.6795 |
0.0083 |
0.94 |
4500 |
0.0606 |
0.3512 |
0.7024 |
0.7024 |
nan |
0.7024 |
0.0 |
0.7024 |
0.0113 |
0.96 |
4600 |
0.0597 |
0.3288 |
0.6576 |
0.6576 |
nan |
0.6576 |
0.0 |
0.6576 |
0.0417 |
0.98 |
4700 |
0.0595 |
0.3405 |
0.6811 |
0.6811 |
nan |
0.6811 |
0.0 |
0.6811 |
0.1944 |
1.0 |
4800 |
0.0594 |
0.3346 |
0.6691 |
0.6691 |
nan |
0.6691 |
0.0 |
0.6691 |
框架版本
- Transformers 4.30.2
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3
📄 許可證
該模型使用其他許可證。
📦 相關信息表格
屬性 |
詳情 |
模型類型 |
圖像分割模型 |
訓練數據 |
varcoder/crack - segmentation - dataset |
庫名稱 |
transformers |
任務標籤 |
圖像分割 |