🚀 segformer-finetuned-4ss1st3r_s3gs3m_24Jan_all-10k-steps
本模型是在 nvidia/mit-b0 基礎上,針對 blzncz/4ss1st3r_s3gs3m_24Jan_all 數據集進行微調得到的圖像分割模型。它在評估集上取得了如下結果,能夠有效應用於圖像分割相關任務,為視覺領域的圖像分析提供有力支持。
🚀 快速開始
本模型是 nvidia/mit-b0 在 blzncz/4ss1st3r_s3gs3m_24Jan_all 數據集上的微調版本。它在評估集上的表現如下:
- 損失值(Loss):0.3095
- 平均交併比(Mean Iou):0.5513
- 平均準確率(Mean Accuracy):0.7874
- 總體準確率(Overall Accuracy):0.9260
- 背景準確率(Accuracy Bg):nan
- 內聚缺陷準確率(Accuracy Fallo cohesivo):0.9668
- 網格缺陷準確率(Accuracy Fallo malla):0.6808
- 粘合缺陷準確率(Accuracy Fallo adhesivo):0.9727
- 氣泡缺陷準確率(Accuracy Fallo burbuja):0.5291
- 背景交併比(Iou Bg):0.0
- 內聚缺陷交併比(Iou Fallo cohesivo):0.9167
- 網格缺陷交併比(Iou Fallo malla):0.6189
- 粘合缺陷交併比(Iou Fallo adhesivo):0.7307
- 氣泡缺陷交併比(Iou Fallo burbuja):0.4903
🔧 技術細節
訓練超參數
訓練過程中使用了以下超參數:
- 學習率(learning_rate):6e - 05
- 訓練批次大小(train_batch_size):8
- 評估批次大小(eval_batch_size):8
- 隨機種子(seed):1337
- 優化器(optimizer):Adam,其中 betas = (0.9, 0.999),epsilon = 1e - 08
- 學習率調度器類型(lr_scheduler_type):多項式
- 訓練步數(training_steps):10000
訓練結果
訓練損失 |
輪數 |
步數 |
驗證損失 |
平均交併比 |
平均準確率 |
總體準確率 |
背景準確率 |
內聚缺陷準確率 |
網格缺陷準確率 |
粘合缺陷準確率 |
氣泡缺陷準確率 |
背景交併比 |
內聚缺陷交併比 |
網格缺陷交併比 |
粘合缺陷交併比 |
氣泡缺陷交併比 |
0.1378 |
1.0 |
783 |
0.2677 |
0.4895 |
0.7143 |
0.9122 |
nan |
0.9724 |
0.5531 |
0.9663 |
0.3654 |
0.0 |
0.9038 |
0.5327 |
0.6757 |
0.3351 |
0.1117 |
2.0 |
1566 |
0.2305 |
0.5289 |
0.7978 |
0.9246 |
nan |
0.9507 |
0.7727 |
0.9705 |
0.4974 |
0.0 |
0.9214 |
0.6808 |
0.5876 |
0.4549 |
0.0881 |
3.0 |
2349 |
0.2041 |
0.5556 |
0.7867 |
0.9354 |
nan |
0.9712 |
0.7391 |
0.9389 |
0.4975 |
0.0 |
0.9273 |
0.6790 |
0.7323 |
0.4394 |
0.0878 |
4.0 |
3132 |
0.1984 |
0.5584 |
0.8003 |
0.9346 |
nan |
0.9556 |
0.8247 |
0.9602 |
0.4606 |
0.0 |
0.9261 |
0.6935 |
0.7373 |
0.4352 |
0.0895 |
5.0 |
3915 |
0.2841 |
0.5246 |
0.8086 |
0.9088 |
nan |
0.9137 |
0.8834 |
0.9719 |
0.4652 |
0.0 |
0.8964 |
0.6309 |
0.6593 |
0.4365 |
0.0773 |
6.0 |
4698 |
0.2547 |
0.5652 |
0.7823 |
0.9336 |
nan |
0.9775 |
0.6843 |
0.9384 |
0.5291 |
0.0 |
0.9251 |
0.6378 |
0.7820 |
0.4813 |
0.0667 |
7.0 |
5481 |
0.2726 |
0.5609 |
0.7932 |
0.9295 |
nan |
0.9741 |
0.6609 |
0.9689 |
0.5689 |
0.0 |
0.9203 |
0.6202 |
0.7548 |
0.5093 |
0.0678 |
8.0 |
6264 |
0.2950 |
0.5276 |
0.8002 |
0.9175 |
nan |
0.9443 |
0.7561 |
0.9713 |
0.5292 |
0.0 |
0.9089 |
0.6570 |
0.5900 |
0.4822 |
0.0653 |
9.0 |
7047 |
0.2712 |
0.5467 |
0.7682 |
0.9288 |
nan |
0.9690 |
0.6971 |
0.9641 |
0.4425 |
0.0 |
0.9189 |
0.6330 |
0.7588 |
0.4228 |
0.0646 |
10.0 |
7830 |
0.2841 |
0.5499 |
0.7819 |
0.9272 |
nan |
0.9681 |
0.6840 |
0.9688 |
0.5068 |
0.0 |
0.9178 |
0.6243 |
0.7345 |
0.4728 |
0.057 |
11.0 |
8613 |
0.3373 |
0.5257 |
0.7782 |
0.9166 |
nan |
0.9593 |
0.6555 |
0.9739 |
0.5242 |
0.0 |
0.9075 |
0.6040 |
0.6319 |
0.4848 |
0.0591 |
12.0 |
9396 |
0.3082 |
0.5504 |
0.7900 |
0.9247 |
nan |
0.9656 |
0.6776 |
0.9705 |
0.5463 |
0.0 |
0.9148 |
0.6172 |
0.7182 |
0.5019 |
0.053 |
12.77 |
10000 |
0.3095 |
0.5513 |
0.7874 |
0.9260 |
nan |
0.9668 |
0.6808 |
0.9727 |
0.5291 |
0.0 |
0.9167 |
0.6189 |
0.7307 |
0.4903 |
框架版本
- Transformers:4.31.0.dev0
- Pytorch:2.0.1 + cpu
- Datasets:2.13.1
- Tokenizers:0.13.3
📄 許可證
本項目使用其他許可證。