🚀 vit_base_patch8_224.dino 模型卡片
這是一個基於視覺變換器(ViT)的圖像特徵模型,採用自監督DINO方法進行訓練。
🚀 快速開始
本模型可用於圖像分類和圖像嵌入提取,以下是使用示例。
✨ 主要特性
- 模型類型:圖像分類/特徵骨幹網絡
- 模型統計信息:
- 參數數量(M):85.8
- GMACs:66.9
- 激活值數量(M):65.7
- 圖像尺寸:224 x 224
- 相關論文:
- Emerging Properties in Self-Supervised Vision Transformers: https://arxiv.org/abs/2104.14294
- An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale: https://arxiv.org/abs/2010.11929v2
- 預訓練數據集:ImageNet - 1k
- 原始代碼庫:https://github.com/facebookresearch/dino
📦 安裝指南
文檔中未提及安裝步驟,若需使用timm
庫,可通過以下命令安裝:
pip install timm
💻 使用示例
基礎用法
圖像分類
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model('vit_base_patch8_224.dino', pretrained=True)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
圖像嵌入
from urllib.request import urlopen
from PIL import Image
import timm
img = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
model = timm.create_model(
'vit_base_patch8_224.dino',
pretrained=True,
num_classes=0,
)
model = model.eval()
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)
output = model(transforms(img).unsqueeze(0))
output = model.forward_features(transforms(img).unsqueeze(0))
output = model.forward_head(output, pre_logits=True)
📚 詳細文檔
你可以在timm 模型結果中探索該模型的數據集和運行時指標。
📄 許可證
本項目採用Apache - 2.0許可證。
📖 引用
@inproceedings{caron2021emerging,
title={Emerging properties in self-supervised vision transformers},
author={Caron, Mathilde and Touvron, Hugo and Misra, Ishan and J{'e}gou, Herv{'e} and Mairal, Julien and Bojanowski, Piotr and Joulin, Armand},
booktitle={Proceedings of the IEEE/CVF international conference on computer vision},
pages={9650--9660},
year={2021}
}
@article{dosovitskiy2020vit,
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
journal={ICLR},
year={2021}
}
@misc{rw2019timm,
author = {Ross Wightman},
title = {PyTorch Image Models},
year = {2019},
publisher = {GitHub},
journal = {GitHub repository},
doi = {10.5281/zenodo.4414861},
howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}