🚀 InternViT-6B-448px-V1-2
InternViT-6B-448px-V1-2是全新發布的權重版本。在InternVL 1.2更新中,涉及對InternViT-6B模型的持續預訓練。具體而言,將InternViT-6B的分辨率從224提升至448,並與[Nous-Hermes-2-Yi-34B]((https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B)進行集成。
[📂 GitHub] [📜 InternVL 1.0] [📜 InternVL 1.5] [📜 Mini-InternVL] [📜 InternVL 2.5]
[🆕 Blog] [🗨️ Chat Demo] [🤗 HF Demo] [🚀 Quick Start] [📖 Documents]
✨ 主要特性
- 分辨率提升:將InternViT-6B的分辨率從224提高到448,增強了模型處理高分辨率圖像的能力。
- 集成優化:與[Nous-Hermes-2-Yi-34B]((https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B)集成,提升了模型的性能。
- 數據增強:在通用圖像描述數據集的基礎上,加入額外的OCR數據,提升了模型的OCR能力。
- 參數優化:通過丟棄最後3個塊,將模型參數從59億減少到55億,節省了GPU內存。
📦 安裝指南
文檔未提及具體安裝步驟,暫不提供。
💻 使用示例
基礎用法
import torch
from PIL import Image
from transformers import AutoModel, CLIPImageProcessor
model = AutoModel.from_pretrained(
'OpenGVLab/InternViT-6B-448px-V1-2',
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True).cuda().eval()
image = Image.open('./examples/image1.jpg').convert('RGB')
image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-448px-V1-2')
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = pixel_values.to(torch.bfloat16).cuda()
outputs = model(pixel_values)
📚 詳細文檔
模型詳情
屬性 |
詳情 |
模型類型 |
視覺基礎模型,特徵骨幹網絡 |
模型參數 |
參數量(M):5540(丟棄最後3個塊);圖像尺寸:448 x 448 |
預訓練數據集 |
LAION-en、LAION-zh、COYO、GRIT、COCO、TextCaps、Objects365、OpenImages、All-Seeing、Wukong-OCR、LaionCOCO-OCR等OCR相關數據集 |
注意事項
InternViT-6B原本有48個塊,經實驗發現,使用倒數第4個塊之後的輸出對多模態大語言模型(MLLM)效果最佳。為了方便使用和節省GPU內存,直接丟棄了最後3個塊。現在,模型僅剩下45個塊,參數數量從59億減少到55億。因此,如果要基於此模型構建MLLM,請使用最後一層的特徵。
⚠️ 重要提示
根據經驗,InternViT V2.5系列更適合用於構建多模態大語言模型,而非傳統的計算機視覺任務。
📄 許可證
本項目採用MIT許可證發佈。
🔖 引用
如果您在研究中發現本項目有用,請考慮引用以下文獻:
@article{chen2024expanding,
title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling},
author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others},
journal={arXiv preprint arXiv:2412.05271},
year={2024}
}
@article{gao2024mini,
title={Mini-internvl: A flexible-transfer pocket multimodal model with 5\% parameters and 90\% performance},
author={Gao, Zhangwei and Chen, Zhe and Cui, Erfei and Ren, Yiming and Wang, Weiyun and Zhu, Jinguo and Tian, Hao and Ye, Shenglong and He, Junjun and Zhu, Xizhou and others},
journal={arXiv preprint arXiv:2410.16261},
year={2024}
}
@article{chen2024far,
title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites},
author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others},
journal={arXiv preprint arXiv:2404.16821},
year={2024}
}
@inproceedings{chen2024internvl,
title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks},
author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={24185--24198},
year={2024}
}