🚀 ViT - H - 14 - CLIPA - 336 - datacomp1B模型卡
這是一個CLIPA - v2模型,可用於對比圖像文本和零樣本圖像分類任務。
🚀 快速開始
本模型可用於零樣本圖像分類任務。下面為你展示如何使用OpenCLIP庫來加載和使用該模型。
✨ 主要特性
- 模型類型:支持對比圖像文本和零樣本圖像分類。
- 原始倉庫:https://github.com/UCSC-VLAA/CLIPA
- 訓練數據集:mlfoundations/datacomp_1b
- 相關論文:
- CLIPA - v2: Scaling CLIP Training with 81.1% Zero - shot ImageNet Accuracy within a $10,000 Budget; An Extra $4,000 Unlocks 81.8% Accuracy: https://arxiv.org/abs/2306.15658
- An Inverse Scaling Law for CLIP Training: https://arxiv.org/abs/2305.07017
📦 安裝指南
文檔中未提及安裝步驟,若需使用open_clip
庫,可通過pip install open_clip
進行安裝(此為常見安裝方式,非原文內容)。
💻 使用示例
基礎用法
import torch
import torch.nn.functional as F
from urllib.request import urlopen
from PIL import Image
from open_clip import create_model_from_pretrained, get_tokenizer
model, preprocess = create_model_from_pretrained('hf-hub:ViT-H-14-CLIPA-336')
tokenizer = get_tokenizer('hf-hub:ViT-H-14-CLIPA-336')
image = Image.open(urlopen(
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
image = preprocess(image).unsqueeze(0)
text = tokenizer(["a diagram", "a dog", "a cat", "a beignet"], context_length=model.context_length)
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = model.encode_image(image)
text_features = model.encode_text(text)
image_features = F.normalize(image_features, dim=-1)
text_features = F.normalize(text_features, dim=-1)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
print("Label probs:", text_probs)
📚 詳細文檔
模型信息表格
屬性 |
詳情 |
模型類型 |
對比圖像文本,零樣本圖像分類 |
原始倉庫 |
https://github.com/UCSC-VLAA/CLIPA |
訓練數據 |
mlfoundations/datacomp_1b |
相關論文 |
- CLIPA - v2: Scaling CLIP Training with 81.1% Zero - shot ImageNet Accuracy within a $10,000 Budget; An Extra $4,000 Unlocks 81.8% Accuracy: https://arxiv.org/abs/2306.15658 - An Inverse Scaling Law for CLIP Training: https://arxiv.org/abs/2305.07017 |
📄 許可證
本模型使用Apache - 2.0許可證。
📚 引用信息
如果你在研究中使用了該模型,請引用以下論文:
@article{li2023clipav2,
title={CLIPA-v2: Scaling CLIP Training with 81.1% Zero-shot ImageNet Accuracy within a $10,000 Budget; An Extra $4,000 Unlocks 81.8% Accuracy},
author={Xianhang Li and Zeyu Wang and Cihang Xie},
journal={arXiv preprint arXiv:2306.15658},
year={2023},
}
@inproceedings{li2023clipa,
title={An Inverse Scaling Law for CLIP Training},
author={Xianhang Li and Zeyu Wang and Cihang Xie},
booktitle={NeurIPS},
year={2023},
}